30 research outputs found

    Crossing enhanced and high fidelity SpCas9 nucleases to optimize specificity and cleavage

    Get PDF
    BACKGROUND: The propensity for off-target activity of Streptococcus pyogenes Cas9 (SpCas9) has been considerably decreased by rationally engineered variants with increased fidelity (eSpCas9; SpCas9-HF1). However, a subset of targets still generate considerable off-target effects. To deal specifically with these targets, we generated new "Highly enhanced Fidelity" nuclease variants (HeFSpCas9s) containing mutations from both eSpCas9 and SpCas9-HF1 and examined these improved nuclease variants side by side to decipher the factors that affect their specificities and to determine the optimal nuclease for applications sensitive to off-target effects. RESULTS: These three increased-fidelity nucleases can routinely be used only with perfectly matching 20-nucleotide-long spacers, a matching 5' G extension being more detrimental to their activities than a mismatching one. HeFSpCas9 exhibit substantially improved specificity for those targets for which eSpCas9 and SpCas9-HF1 have higher off-target propensity. The targets can also be ranked by their cleavability and off-target effects manifested by the increased fidelity nucleases. Furthermore, we show that the mutations in these variants may diminish the cleavage, but not the DNA-binding, of SpCas9s. CONCLUSIONS: No single nuclease variant shows generally superior fidelity; instead, for highest specificity cleavage, each target needs to be matched with an appropriate high-fidelity nuclease. We provide here a framework for generating new nuclease variants for targets that currently have no matching optimal nuclease, and offer a simple means for identifying the optimal nuclease for targets in the absence of accurate target-ranking prediction tools

    Cpf1 nucleases demonstrate robust activity to induce DNA modification by exploiting homology directed repair pathways in mammalian cells

    Get PDF
    Background: Cpf1 nucleases have recently been repurposed for site-specific genome modification. Two members of the Cpf1 family, the AsCpf1 from Acidaminococcus sp. and the LbCpf1 from Lachnospiraceae bacterium were shown to induce higher indel frequencies than SpCas9 when examining four randomly-selected target sequences for each type of nuclease. Whether they are a real match for Cas9 nucleases, however, remains to be verified. Results: Here, we used AsCpf1 and LbCpf1 to induce homology directed repair, either single strand annealing (SSA) or homologous recombination (HR), in N2a mouse neuroblastoma cells. Exploiting a plasmid that contains two GFP halves with overlapping sequences and exploring 20 targets, on all but one both nucleases consistently performed with above 10 % efficiency. Several Cas9 nucleases have been previously characterised in order to find an orthogonal counterpart for the most widely used promiscuous SpCas9. Here, we found that AsCpf1 and LbCpf1 might be better candidates than three of the best such counterparts: Cas9 from Staphylococcus aureus, from Streptococcus thermophilus and from Neisseria meningitidis, when assessed for inducing efficient SSA mediated repair in N2a cells. When tested on genomic targets exploiting HR, both nucleases were able to induce the integration of a donor cassette with 1000 bp-long homologous arms. We also generated plasmids that express these Cpf1 nucleases together with their cognate crRNAs and that are equipped with type IIS restriction enzyme sites to facilitate spacer cloning. Conclusions: Our results suggest that employing As-or LbCpf1 nuclease to induce homology directed repair in N2a cells, although is less effective at present than employing SpCas9, it is an equally or more effective tool than the most frequently used orthogonal Cas9 counterparts of SpCas9. These findings support the position of Cpf1 nucleases on the side of SpCas9 on the palette of effective genome engineering tools

    Interrogating the Dimerization Interface of the Prion Protein Via Site-Specific Mutations to p-Benzoyl-L-Phenylalanine

    Get PDF
    Transmissible spongiform encephalopathies are centered on the conformational transition of the prion protein from a mainly helical, monomeric structure to a beta-sheet rich ordered aggregate. Experiments indicate that the main infectious and toxic species in this process are however shorter oligomers, formation of which from the monomers is yet enigmatic. Here, we created 25 variants of the mouse prion protein site-specifically containing one genetically-incorporated para-benzoyl-phenylalanine (pBpa), a cross-linkable non-natural amino acid, in order to interrogate the interface of a prion protein-dimer, which might lie on the pathway of oligomerization. Our results reveal that the N-terminal part of the prion protein, especially regions around position 127 and 107, is integral part of the dimer interface. These together with additional pBpa-containing variants of mPrP might also facilitate to gain more structural insights into oligomeric and fibrillar prion protein species including the pathological variants. (C) 2018 Elsevier Ltd. All rights reserved

    A convenient method to pre-screen candidate guide RNAs for CRISPR/Cas9 gene editing by NHEJ-mediated integration of a 'self-cleaving' GFP-expression plasmid.

    Get PDF
    The efficacies of guide RNAs (gRNAs), the short RNA molecules that bind to and determine the sequence specificity of the Streptococcus pyogenes Cas9 nuclease, to mediate DNA cleavage vary dramatically. Thus, the selection of appropriate target sites, and hence spacer sequence, is critical for most applications. Here, we describe a simple, unparalleled method for experimentally pre-testing the efficiencies of various gRNAs targeting a gene. The method explores NHEJ-cloning, genomic integration of a GFP-expressing plasmid without homologous arms and linearized in-cell. The use of 'self- cleaving' GFP-plasmids containing universal gRNAs and corresponding targets alleviates cloning burdens when this method is applied. These universal gRNAs mediate efficient plasmid cleavage and are designed to avoid genomic targets in several model species. The method combines the advantages of the straightforward FACS detection provided by applying fluorescent reporter systems and of the PCR-based approaches being capable of testing targets in their genomic context, without necessitating any extra cloning steps. Additionally, we show that NHEJ-cloning can also be used in mammalian cells for targeted integration of donor plasmids up to 10 kb in size, with up to 30% efficiency, without any selection or enrichment

    Position-Dependent Sequence Motif Preferences of SpCas9 are Largely Determined by Scaffold-Complementary Spacer Motifs

    Get PDF
    Streptococcus pyogenes Cas9 (SpCas9) nuclease exhibits considerable position-dependent sequence preferences. The reason behind these preferences is not well understood and is difficult to rationalise, since the protein establishes interactions with the target-spacer duplex in a sequence-independent manner. We revealed here that intramolecular interactions within the single guide RNA (sgRNA), between the spacer and the scaffold, cause most of these preferences. By using in cellulo and in vitro SpCas9 activity assays with systematically designed spacer and scaffold sequences and by analysing activity data from a large SpCas9 sequence library, we show that some long (>8 nucleotides) spacer motifs, that are complementary to the RAR unit of the scaffold, interfere with sgRNA loading, and that some motifs of more than 4 nucleotides, that are complementary to the SL1 unit, inhibit DNA binding and cleavage. Furthermore, we show that intramolecular interactions are present in the majority of the inactive sgRNA sequences of the library, suggesting that they are the most important intrinsic determinants of the activity of the SpCas9 ribonucleoprotein complex. We also found that in pegRNAs, sequences at the 3â€Č extension of the sgRNA that are complementary to the SL2 unit are also inhibitory to prime editing, but not to the nuclease activity of SpCas9

    Mb- and FnCpf1 nucleases are active in mammalian cells

    Get PDF
    Cpf1s, the RNA-guided nucleases of the class II clustered regularly interspaced short palindromic repeats system require a short motive called protospacer adjacent motif (PAM) to be present next to the targeted sequence for their activity. The TTTV PAM sequence of As- and LbCpf1 nucleases is relatively rare in the genome of higher eukaryotic organisms. Here, we show that two other Cpf1 nucleases, Fn- and MbCpf1, which have been reported to utilize a shorter, more frequently occurring PAM sequence (TTN) when tested in vitro, carry out efficient genome modification in mammalian cells. We found that all four Cpf1 nucleases showed similar activities and TTTV PAM preferences. Our approach also revealed that besides their activities their PAM preferences are also target dependent. To increase the number of the available targets for Fn- and MbCpf1 we generated their RVR and RR mutants with altered PAM specificity and compared them to the wild-type and analogous As- and LbCpf1 variants. The mutants gained new PAM specificities but retained their activity on targets with TTTV PAMs, redefining RR-Cpf1's PAM-specificities as TTYV/TCCV, respectively. These variants may become versatile substitutes for wild-type Cpf1s by providing an expanded range of targets for genome engineering applications

    Expression and In Vivo Rescue of Human ABCC6 Disease-Causing Mutants in Mouse Liver

    Get PDF
    Loss-of-function mutations in ABCC6 can cause chronic or acute forms of dystrophic mineralization described in disease models such as pseudoxanthoma elasticum (OMIM 26480) in human and dystrophic cardiac calcification in mice. The ABCC6 protein is a large membrane-embedded organic anion transporter primarily found in the plasma membrane of hepatocytes. We have established a complex experimental strategy to determine the structural and functional consequences of disease-causing mutations in the human ABCC6. The major aim of our study was to identify mutants with preserved transport activity but failure in intracellular targeting. Five missense mutations were investigated: R1138Q, V1298F, R1314W, G1321S and R1339C. Using in vitro assays, we have identified two variants; R1138Q and R1314W that retained significant transport activity. All mutants were transiently expressed in vivo, in mouse liver via hydrodynamic tail vein injections. The inactive V1298F was the only mutant that showed normal cellular localization in liver hepatocytes while the other mutants showed mostly intracellular accumulation indicating abnormal trafficking. As both R1138Q and R1314W displayed endoplasmic reticulum localization, we tested whether 4-phenylbutyrate (4-PBA), a drug approved for clinical use, could restore their intracellular trafficking to the plasma membrane in MDCKII and mouse liver. The cellular localization of R1314W was significantly improved by 4-PBA treatment, thus potentially rescuing its physiological function. Our work demonstrates the feasibility of the in vivo rescue of cellular maturation of some ABCC6 mutants in physiological conditions very similar to the biology of the fully differentiated human liver and could have future human therapeutic application

    Preparation of semisynthetic lipoproteins with fluorescent cholesterol anchor and their introduction to the cell membrane with minimal disruption of the membrane

    No full text
    The exogenous introduction of fluorescent lipoproteins into cell membranes is a method for visualizing the cellular traffic of membrane associated proteins, and also for altering the cell surface in a controlled manner. In order to achieve the cell membrane anchoring of proteins and their subsequent fluorescence based detection, a cholesterol derivative was designed. The headgroup of the novel cholesterol anchor contains a fluorescent reporter and a thiol reactive maleimide for protein conjugation. Protein conjugation was demonstrated by the addition of a green fluorescent maleimido anchor to the C-terminus of a Cys extended red fluorescent protein, mCherry. The resulting dual fluorescent cholesteryl lipoprotein was successfully separated from the micellar associates of the surplus fluorescent lipid anchor without denaturing the protein, and the lipoprotein containing only the covalently linked, stoichiometric fluorescent lipid was efficiently delivered to the plasma membrane of live cells. It was demonstrated that the membrane fluorescence could be directly assigned to the protein-anchor conjugate, because no excess of fluorescent lipid species were present during the imaging experiment and the protein and anchor fluorescence colocalized in the cell membrane. Molecular dynamics simulations and subsequent trajectory analysis suggest also the spontaneous and stable membrane association of the cholesterol anchor. Thus, the method could be beneficially applied for studying membrane associated proteins and for preparing mimetics of glycosylphosphatidylinositol (GPI)-anchored proteins to target cholesterol-rich membrane microdomains
    corecore