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1  Abbreviations: pBpa, p-benzoyl-L-phenylalanine; PrP, prion protein; mPrP,  mouse prion 

protein; mPrPmch, mouse prion protein fusion with mCherry; PrP
C
, cellular prion protein ; 

PrP
Sc

, Scrapie prion; HD, hydrophobic domain; CR, central region; OR, octarepeat region; 

GPI, glycophosphatidyl-inositol; PBS , phosphate buffer saline; aa, amino acid; WT, wild 

type. 
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Abstract 

 

   Transmissible spongiform encephalopathies are centered on the conformational transition of 

the prion protein from a mainly helical, monomeric structure to a -sheet rich ordered 

aggregate. Experiments indicate that the main infectious and toxic species in this process are 

however shorter oligomers, formation of which from the monomers is yet enigmatic. Here, we 

created 25 variants of the mouse prion protein site-specifically containing one genetically-

incorporated para-benzoyl-phenylalanine (pBpa), a cross-linkable non-natural amino acid, in 

order to interrogate the interface of a prion protein-dimer, which might lie on the pathway of 

oligomerization. Our results reveal that the N-terminal part of the prion protein, especially 

regions around position 127 and 107, is integral part of the dimer interface. These together 

with additional bbBpa-containing variants of mPrP might also facilitate to gain more 

structural insights into oligomeric and fibrillar prion protein species including the pathological 

variants. 

 

 

Keywords: prion; dimerization; photo-crosslinking; pBpa; protein conformational stability 
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Introduction 

  While the exact physiological function of the prion protein (PrP) is not fully understood, it 

seems to be a promiscuous protein being involved in several cellular processes and interacting 

with a great number of partners [1–8]. Nevertheless, PrP is famous for its involvement in 

devastating neurodegenerative disorders, especially in transmissible spongiform 

encephalopathies (TSEs), a group of incurable and lethal diseases [9,10]. In most of the cases, 

the origin of TSE is unknown (sporadic), but in some instances familial or infectious origins 

can be revealed in the history of the patients. Although the pathologies of various TSEs are 

slightly different depending on the origins of the diseases and on the area of the brain that is 

first affected, the fundamental event is the conformational transition of the normal, cellular 

prion protein (PrP
C
) of the host to an aggregated -sheet-rich state (PrP

Sc
) [9–12] . The 

difference between the two states of PrP is purely conformational and both forms are 

glycosylated, equipped with a GPI anchor and are stabilized by one intramolecular disulfide 

bond [13–28]. 

    

   The pathways of PrP
C
 to PrP

Sc
 formation are not clear and the fact that PrP can form several 

different type of oligomeric, aggregated or fibrillar states makes it no simpler to discern. A 

number of conversion reactions have been established using brain-derived mammalian PrP
C
 

or even bacterially expressed recombinant PrP, revealing several features of the conversion, 

the formed proteinase K (PK)-resistant or infectious material and the necessary co-factors 

[29–43]. However, much less understood are the initial steps leading to dimer and/or oligomer 

formation and their relation to fibril formations.  

   The spontaneous formation of PrP
Sc

 from wild type PrP
C
 and its leading to a self-sustainable 

process might occur in extremely rare instances, if at all, in the genesis of sporadic TSE. 
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Spontaneous formation occurs more frequently in familial TSEs [44,45]. Enhancing the 

spontaneous in vitro bbconversion of PrP to forms reminiscent, at least in some aspects, of 

PrP
Sc

 is generally attempted by destabilizing the conformation of the recombinant PrP using 

chemicals and/or varying the pH or the temperature [32,46–52]. Reduction of the disulfide 

bond destabilizes the protein [53,54] and also potentiates the conversion of PrP to oligomeric 

forms [49,54,55].  These -sheet rich misfolded oligomers, while exhibiting some low level 

PK-resistance, likely have different structures from those of brain-derived PrP
Sc

 that possesses 

an intact disulfide bond [14,15]. Several forms of oligomers with different structures and sizes 

can be prepared and even oligomers with different characteristics generated under identical 

conditions have been described [46,56–61]. Some of these PrP oligomers generated in vitro 

are cytotoxic to cells and are thought to lay off the pathways of fibril formations [46,62,63]. 

However, it is not clear that which if any of them are the toxic and/or infectious species 

formed during the course of TSE. It is also not clear if the starting point of oligomerization is 

a monomeric or a dimeric form.  

   Interestingly, a number of studies employing various approaches suggested that a fraction of 

PrP
C
 exist as alpha helical dimers in vivo [64–67] and pointed to the importance of 

dimerization in the physiological functions and cytoprotective roles played by PrP
C
 (reviewed 

by [68]). In-cell dimerization of PrP
C
 in cell lines and primary neurons increases trafficking to 

the plasma membrane and production of the neuroprotective metabolites of PrP, PrPN1 

[69,70] and PrPC1 [71], and of shed-PrP [72], which also led to the proposition of an 

alternate, dimerization-regulated secretion pathway for PrP
C
 that would allow a quick 

response to toxic stimuli [73]. The hydrophobic domain (HD) of PrP was proven to be 

essential for the α-cleavage to occur [74], the mechanism that produces these protective 

metabolites. Using N2a cells it was also demonstrated that the HD (aa 112 to 133) of mouse 
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PrP, is essential for the dimerization of PrP, as well as that a PrP
C
 dimer is essential for the 

toxicity of PrP
Sc

 [67]. 

   An alpha helical dimer is also formed from recombinant Syrian hamster PrP, fragment 90 to 

231[PrP(90-231)]  with low SDS concentration [75]. However, it was not clear if it represents 

a native form or it is already a species/intermediate in the conversion of PrP [76,77]. The 

formation of PrP
C
 dimer may be critical at the strat of PrP misfolding, which at first, may or 

may not involve the partial unfolding of the protein. 

   Here, we developed a system for the creation of PrP variants each bearing one cross-

linkable, genetically coded unnatural amino acid substitution at predetermined positions. This 

tool may facilitate the identification of "true" PrP interactors/binding partners in vivo under 

well-defined conditions, as well as to map the structure of the pathological form of PrP and 

interrogate the conformation of the intermediate/dimeric PrP species. Here, we used this tool 

to investigate the dimerization surface of an alpha helical PrP dimer.  
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Results  

The series of site specific pBpa-mutant prion proteins generated to map the dimerization 

site of the mouse prion protein and tagged by mCherry 

   We adapted the system developed by the Schultz laboratory [78] for genetic incorporation 

of unnatural amino acids into protein sequences in Escherichia coli (E. coli) for the purpose to 

produce pBpa-mutants of the mouse prion protein (mPrP). This system is based on a cognate 

tRNA and amino acyl synthetase pair orthogonal to the E. coli machinery and is capable of 

introducing para-benzoylphenylalanine (pBpa) to amber stop codons.  

   In order to facilitate generation of pBpa-point mutants sweeping through regions of interest 

in the sequence, we introduced new unique restriction sites to the coding sequence of PrP by 

silent mutations. These, allowed later for the introduction of amber codon mutations by 

simple linker ligation along the almost entire coding region of mPrP (see Materials and 

Methods). Using such an approach ensured an easy access to the great number (about 50 from 

which 38 are used here) of mutant PrPs we generated. 

   For the position of pBpa insertion, we aimed to cover also regions that were previously 

proposed to be involved in dimerization/oligomerization, such as the hydrophobic domain 

(HD, residues 111 to 134) [67,73,79] or the central region (CR, residues 105 to 125) [80] or 

the N-terminal 90-120 segment [81], and also few positions that are not considered to be  

taking part in the dimerization surface. With this strategy we selected a set of 24 positions, 

with 20 falling in the N-terminal half and HD and additional two positions in the C-terminal 

half of the protein (Fig. 1a).   

   After initial experiments, owning to its higher expression levels with pBpa analogs, we 

generated amber stop codon mutants of mPrP in fusion with an mCherry fluorescent protein 
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expression cassette at the C-terminus using  pRSET-B vectors for expression. The tag allowed 

on the one hand, visual examination and tracking of the protein during purification steps, 

aiding optimization of the conditions, and on the other hand, might slightly increase the 

solubility and promote easier handling of the protein. Later, we also generated untagged PrP 

constructs for pBpa substitutions at selected positions, and tested the untagged mPrPs also to 

verify whether the tag may have any significant influence on the results obtained.  

   The purified wild type (WT) and pBpa-mutant PrP-mCherry fusion proteins appear at about 

the same position on SDS polyacrylamide gels and at around their expected molecular 

weights of 52 kDa, constituted  by the MW of PrP (23.1 kDa) and of the mCherry tag (29 

kDa) (Fig. 1b).    
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Fig. 1. The series of site specific single-pBpa-mutant PrPs generated. (a) Schematic 

diagram of the mPrP sequence (aa 23-231) indicating the residues chosen for pBpa-mutation 

to generate a series of single-pBpa-mutant mPrPs, and the structural features of the protein, 

(1 and 2: beta sheets, α1-3: alpha helices, S-S: disulfide bond). (b) Representative SDS-

PAGE of purified mCherry tagged wild type (lane 2, mPrPmCh) and a pBpa-mutant [lane 3, 

mPrP(Y127pBpa)mCh] prion protein on a 10% polyacrylamide-SDS gel. Proteins resolve at 

about their expected weights,  sum of wtPrP and mCherry (~52 kDa). Additional bands can be 

observed below the full length protein, common for  mCherry-tagged proteins, due to the 

hydrolysis of the acylimine linkage of the chromophore of mCherry upon sample-treatment 

such as SDS-denaturing and boiling, and fragmentation of the mCherry during SDS-PAGE 

analysis [82–85].  
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   We found best protein yields when using LB media as contrast to minimal media for 

culturing. It has been reported that the amino acyl synthetase might retain some of its ability 

to charge its cognate tRNA with tyrosine, especially when the protein is expressed in LB 

medium. To see if insertion of pBpa indeed occurred selectively, we cultured and induced in 

parallel cells transfected by the wild type protein gene, the protein gene containing the amber 

codon at a desired position (here at codon 131) and a mutant protein coding for a tyrosine at 

that position. All three cultures were either supplemented by pBpa or were grown without 

pBpa and were induced for protein expression. The purified proteins were excised from SDS 

gels and analyzed by mass spectrometry (for details see Materials and Methods). The results 

confirmed that a correctly inserted pBpa is present in at least ~90% in the produced pBpa-

mutant protein samples and insertion occurred only at the expected position (Fig. S1). 

 

pBpa insertions did not affect protein conformational stabilities 

   With a few exceptions, we placed most of the pBpa substitutions, in the conformationally 

disordered part of the prion protein, where this is not expected to result in structural changes 

of the folded protein and alterations in protein stability. However, to test for such possible 

effects, we performed stability tests on selected mutants and the wild type protein, using an 

urea gradient assay developed for disulfide bond containing proteins [86]. In this assay, the 

disulfide-containing protein is being treated by increasing concentrations of urea in the 

presence of a low concentration of reducing agent (here 20 mM DTT). As the urea unfolds the 

protein, the disulfide bonds became available to the reducing agent and can be reduced, 

whereas this can not take place if the protein is still folded. By blocking the reducing agent 

and the protein thiols at this time (e.g. by applying NEM in excess) the folded (and disulfide-
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intact) and unfolded (reduced) protein populations present in the sample can be fixed and later 

be visualized on non-reducing SDS-polyacrylamide gel based on the differing mobilities of 

the disulfide-intact and reduced forms. In the case of the prion protein, there are two cysteines 

that form one disulfide bond within the C-terminal globular half of the protein stabilizing its 

structure. Since, the mCherry does not possess internal cysteines, the method is applicable for 

testing not only the untagged PrP, but also the prion-mCherry fusion constructs: the unfolding 

of mCherry being silent in this assay, does not yield change in the mobility on a denaturing 

gel. Also, without a functional interaction between PrP and mCherry, the unfolding of 

mCherry is not expected to affect the stability of the prion protein’s structure /unfolding 

process. In line with this, the gradual appearance of the unfolded prion proteins at increasing 

urea concentrations can be clearly detected (Fig. 2).  

                      

  Fig. 2. The WT and pBpa-mutant prion-mCherry proteins have similar conformational 

stabilities. Representative gel pictures of the urea gradient assay for WT and 127pBpa 

mutant, as indicated on the figure.  

 

   Along with the WT, several mutant variants were tested:  positions 127, 128 and 129 that  

might be part of the C-terminal globular domain (aa 125-227) of the bacterially expressed 

prion protein [87,88] and are also reported to be part of or adjacent to protein-protein 

interaction regions [89]. We also chose two pBpa substitutions at positions Glu206 and 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

11 
 

Glu210 that are part of the helix III of PrP. We found that the proteins with pBpa substitutions 

have similar unfolding patterns as the wild type protein; their transition regions are within 2 to 

4 M urea, and midpoints at 3 ± 0.5 M urea concentration (Fig. S2). These indicate that 

substitutions of amino acids at these positions to pBpa did not perturb the stability of the 

protein and also suggest that pBpa can be well-tolerated in these protein structures. 

 

 

The mCherry-tagged prion proteins harboring site specific mutations to photo-sensitive 

pBpa successfully crosslink a dimeric complex when photo-activated in a dimeric state 

   The purified recombinant prion protein is known to be prone to oligomerize in solutions 

around physiological pH [46,59,90], a phenomenon that is also concentration dependent 

[50,91] Kaimann et al. [76] had shown that by applying different submicellar concentrations 

of SDS in the buffer, the recombinant hamster prion protein (haPrP 90-231) could be kept in 

specific oligomeric states, dimeric or higher oligomeric, depending on the amount of SDS 

applied. Based on their findings we optimized the conditions of photo-crosslinking reactions 

for both sample condition and the parameters of the UV-crosslinking. Applying 0.06% SDS in 

PBS buffer of pH 7.4 and a protein concentration of 6 µM we could achieve successful 

crosslinks of dimeric proteins that are demonstrated (Fig. S3) on reducing SDS-

polyacrylamide gels. To exclude the possibility to account for dimers that crosslinked through 

a non-pBpa residue (a process the prion protein prone to) two types of controls were present 

in all experiments: non-irradiated samples, which had been incubated in dark and the wild 

type protein, which has been irradiated, both for the very same length of time as the 

experimental samples. Careful handling and timely processing of the samples kept minimal 

the appearance of non-pBpa crosslinked protein species on the SDS gels. According to this 
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protocol, each purified pBpa-mutant prion-mCherry fusion protein, a total of 24 and the wild 

type, were irradiated and were tested for the appearance of photo-crosslinked dimers by SDS-

PAGE (Fig. 3).                                   

 

              

Fig. 3. Photo-crosslinking of dimers of various prion-mCherry proteins containing site 

specifically inserted pBpa in the sequence of the PrP. Representative pictures of reducing 

10% polyacrylamide gels of WT and selected pBpa-mutants (a) irradiated at 365 nm for 2 h 

and (b) non-irradiated, but incubated at dark in otherwise similar conditions as indicated on 

the figure. Proteins are crosslinked at 6 µM concentration in the presence of 0.06% SDS (in 

PBS, pH 7.4) that favors its dimerization. For optimization of SDS concentration and 

irradiation time see Fig. S3 and S4, respectively.   

 

   The appearance of the crosslinked dimer can be observed at the expected molecular weight 

of around 104 kDa -the double of the monomeric protein weight of 52 kDa, both marked by 

arrows (lanes 3 through 6 on Fig. 3a). There are no bands present at above the monomeric 

sizes for the WT (no pBpa-containing) and for the non-irradiated (lane 2 on Fig. 3a and 3b, 
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respectively) samples, suggesting that all bands appearing in this region for the irradiated 

samples correspond to crosslinked proteins. The two characteristic satellite bands for the 

crosslinked samples observable between dimeric and the monomeric forms and for all 

samples below the monomeric form, are not the results of proteolytic degradation but of the 

specific cleavage of mCherry taking place in the sample buffer as mentioned earlier. To 

ensure the proper interpretation of samples showing minimal or no specific crosslinking, a 

positive control (pBpa mutant at position 127) was included in all experiments. 

   As expected, the amount of crosslinked dimers differs for different positions of pBpa, 

reaching highest level for the variant containing pBpa at position 127. However, we can not 

entirely exclude the possibility that some amount of dimers or oligomers apparent on the gels 

originate from nonspecific association of protein molecules that were locked in the irradiated 

samples by pBpa crosslinking. 

   

The amount of non-specific dimers crosslinked  

   To be able to measure the true dimer-crosslinking efficiency, we need to account for any 

nonspecific dimers that result from random, temporary association of the two protein 

molecules that may be crosslinked by pBpa during irradiation. To solve this problem we 

chose to look for conditions that move the system away from the dimer specific equilibrium 

and effectively disrupt the specific interactions that could result in dimer formation. We 

experimented with increasing the concentration of SDS to find conditions in which the protein 

is in monomeric state. This could be well indicated by the gradual disappearance of the dimer 

band of the most efficiently crosslinking sample, the Y127pBpa mutant, after irradiation. 

While testing a range of SDS concentrations between 0.2 to 5% (Fig. S4), we found that 

above 2% SDS the amount of crosslinked dimer in the irradiated sample was not decreasing 
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anymore. Therefore, we performed the crosslinking experiments side-by-side at 0.06% and 

2% SDS conditions (Fig. 4 and Fig. S6), for each particular position (i.e. mutant), to assess for 

the amount of nonspecifically crosslinked product. We considered the crosslinked dimeric 

complexes at 2% SDS as being the maximal fraction of unspecific background arising from 

capturing random associations. 

                               

          

  Fig. 4. Assessing the specific and nonspecific dimers crosslinked. Representative gel 

pictures of WT and selected pBpa-mutant prion-mCherry proteins as indicated, irradiated at 

365 nm (a) or kept at dark (b) for 2 h, at dimer (0.06%) or monomer (2%) favoring SDS 

conditions. (The value of 2% for SDS was chosen based on Fig. S5. For the rest of the 24 

positional pBpa-mutants see Fig. S6). 
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Discerning the residue positions involved in the dimerization interface during specific 

dimer interactions of PrP-mCherry through estimating crosslinking efficiencies. 

The efficiencies of various positional pBpa-mutants to crosslink PrP dimers at 0.06% SDS 

were calculated based on gel-densitometry analysis of the SDS-PAGE of crosslinked proteins 

(presented on Fig. 3, 4 and S6) as described in Materials and Methods, and it is shown on Fig. 

5. 
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Fig. 5. Efficiencies of crosslinking specific dimers of PrP by positional variants of pBpa 

mutant prion-mCherry proteins. Percentages of crosslinked dimers are shown (a) for 

various pBpa positional mutants obtained under conditions that either favors dimerization 

(0.06% SDS, black bars) or rather a monomeric state (2% SDS, grey bars). Dimer percentages 

were evaluated by gel-densitometry analysis as described in Materials and Methods and error 

bars show the standard deviations from mean of repeated experiments. For each protein, the 

difference between the values obtained in dimer-specific and non-dimer specific conditions 

(0.06% SDS and 2% SDS) was calculated (b) and was tested for significance using Student’s 

t-test. The significant differences that are marked on (a) were considered as those positions 

where specific dimer-crosslinking occured. Asterisks indicate as follows: *: p<0.05, **: 

p<0.01, ***: p<0.001. A three dimensional ribbon diagram of the mPrP for the available 

sequence region 120-230 aa. is shown on panel (c) with the most significant dimer-crosslinker 

positions (127, 128, 131) highlighted along the sequence on the 3D fold. Position 107 also has 

significant dimer crosslinking efficiency but falls outside of this fold.   

 

 

   The highest efficiency of crosslinking the dimer was obtained for the position of 127 of the 

pBpa that resulted about 40% crosslinked protein amount. This was followed by position 131, 

107 and 128, respectively, yielding between 10% and 20% crosslinked products. Altogether, 9 

out of the 24 positions examined resulted crosslinked protein amounts significantly higher 

than that corresponding to non-specific association of the proteins in 2% SDS.  

Untagged prion protein mutants with site specifically inserted pBpa efficiently crosslink 

dimeric complexes at conditions favoring dimer formation.  
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  After successful optimization of the expression of pBpa-containing tagged prion protein 

variants, to check if the presence of mCherry tag had any influence on the dimerization of the 

prion proteins, we engineered a selected set of 14 pRSETB expression plasmids with amber 

codon-mutant untagged mouse prion protein DNAs and using similar conditions produced the 

untagged proteins. We selected positions for amber codon placement based on the results of 

Fig. 5, namely positions 80, 90, 107, 111, 113, 116, 119, 120, 121, 124, 127, 128, 129 and 

131, representing both efficient and inefficient dimer-crosslinking. The purified recombinant 

untagged prion and pBpa-mutant prion proteins show single bands on reducing SDS-PAGE 

gels at the expected molecular weights of 23 kDa (Fig. 6a).  

Similarly, to mCherry-tagged variants, we tested the stabilities of the untagged WT and pBpa-

mutant prion proteins by urea gradient assay. Comparing the WT and the mPrP(Y127pBpa) 

mutant, we found same transition regions of between 2 to 3 M urea, and same transition 

midpoint at around 2.5 M for both proteins (Fig. 6b).  
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 Fig. 6. Untagged wild type and pBpa-mutant PrPs have similar conformational 

stabilties. Representative pictures of 12% polyacrylamide-SDS gels: (a) the purified WT and 

pBpa-mutant proteins and (b) the urea gradient assays as indicated on the figure.   

 

 We performed crosslinking experiments with the untagged WT and pBpa-mutant PrPs in 

same conditions as forthe mCherry-tagged versions of the proteins: at 0.06% and 2% SDS 

conditions (in PBS, pH 7.4) favoring dimer and monomer formation of PrP, respectively, and 

tested the samples similarly on reducing SDS-gels. After irradiation, for pBpa-mutant protein 

samples a crosslinked population can be observed at the expected molecular weight of a dimer 

(Fig. 7a), at ~46 kDa. Also, higher molecular weight bands can be seen, indicative of low 

quantities of trimeric and tetrameric complexes of ~69 and ~92 kDa, respectively. In the case 

of the control samples that were kept at dark in parallel, no dimers can be observed (Fig. 7b). 

               

   

 

Fig. 7. Non-specific crosslinked dimers. Representative pictures of reducing 12% 

polyacrylamide gels of selected proteins bearing pBpa-mutations. (a) Samples irradiated at 
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365 nm for 2 h. (b) non-irradiated samples, incubated in the same conditions at dark as 

indicated in the figure. Proteins (6 µM) are crosslinked side-by-side in the presence of either 

0.06% or 2% SDS (in PBS, pH 7.4), conditions that favor either dimerization or the 

monomeric form of the prion protein, respectively. For the additional pBpa-mutants tested see 

Fig. S7. 

 

 Efficiencies of dimer crosslinking were evaluated as previously, considering the sum of 

dimer and monomeric bands as 100%, both at 0.06% and at 2% SDS conditions, and by 

correcting for the controls (Fig. 8).  
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Fig. 8. Positional variants of untagged pBpa-mutant prion proteins efficiently crosslink 

dimer complexes. Bars represent (a) crosslinked dimer-percentages obtained for pBpa-

mutants under conditions that either favor dimerization (0.06% SDS, black bars) or rather a 

monomeric state (2% SDS, grey bars) as calculated in Fig. 5 and (b) their differences (2% 

SDS-subtracted-values). Values on (a) represent averages obtained for at least 4 repetitions of 

the experiment and error bars show the standard deviations from mean. Significant differences 

between the 0.06 and 2% SDS results were assessed by Student’s t-test and are indicate for 

corresponding positions on panel (a) by asterisks as follows *: p<0.05, **: p<0.01, ***: 

p<0.001.  

 

 

   The highest amounts of dimers could be crosslinked when pBpa is inserted at position 127, 

yielding almost 40% crosslinked dimers above the unspecific control 2% SDS condition, 

similarly as in case of mCherry-tagged set of proteins. The positional mutants 107, 113, 128 

and 131 are among those showing the highest efficiencies, as in case of the mCherry tagged 

proteins.  Eight out of the 14 mutants examined exhibited significant amount of crosslinked 

products above those found in the monomeric, 2% SDS, condition.  

 These data indicate that the same positional pBpa-mutants provide efficient dimer-

crosslinking in both tagged and untagged froms and that the pBpa-mutants have generally 

similar ranking irrespective of being tagged by mCherry or untagged.  

Finally, we also recorded circular dichroism (CD) spectra of the WT and the mutant proteins 

under conditions that favor either monomer or dimer PrP to look for secondary structural 

element rearrangements (Fig. S8). On the one hand, we confirmed our earlier results (Fig. 2, 

Fig. 6b and supplementary Fig. S2) that the mutations do not perturb significantly the native 
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structure of WT-PrP. On the other hand, we found that there are little variations in the CD 

spectra of the prion proteins between monomer and dimer favoring condition; PrP, in line 

with earlier studies [72,73] preserves its overall helical fold under dimerization.  

 

 

Discussion  

 In studies preceding this work, a dimer with mainly α-helical structure was identified and 

discussed as an intermediate on the putative pathway from the PrP
C
 to the pathogenic form 

[75,76]. These earlier studies were carried out using recombinant hamster PrP (90–231) 

arguing that this represents the amino acid sequence of infectious prion rods, or PrP 27–30, 

and contains only the rigid part of the structure. Here, we used the full length recombinant 

mouse PrP (aa 23-231) to approximate better the physiological fold of the protein, either 

tagged by an mCherry at the C-terminal or untagged, to interrogate the structure of PrP.  

 Unlike earlier studies, we used pBpa, a site specific crosslinker that reacts with C-H groups 

of the protein backbone and side chains when they are within a distance of less than 3.1 A° 

from pBpa in a protein structure. By contrast, when flexible parts of a complex are 

crosslinked, methionine may mediate efficient crosslinking up to a distance of 13 A° referred 

to as magnet effect of methionine [92–94]. The 90-135 segment of PrP is thought to possess 

some flexibility in PrP monomers and likely, in a dimer too; in the solution NMR structure 

only the 124-135 region is structured. Thus, many of the positions containing pBpa 

substitutions here may lie in the flexible region making them prone to interact with a nearby 

active methionine. However, the flexible 23-124 fragment has no methionine, which 

substantially decreases the likeliness of such an unspecific methionine "magnet effect"  [93]. 
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 pBpa when placed at the beginning of the structured domain of PrP, positions 126-131, 

confers highest propensity for crosslinking the dimer (with 127 pBpa being the most 

efficient), suggesting that this region is either part of or neighbour the dimer interface. Earlier 

studies have shown that a Cys131 mutant of overexpressed mouse PrP
C
 forms disulfide-

bonded dimer in the membrane of SH-SY5Y human neuroblastoma cells, suggesting that 

position 131 is part of or is close to the interface of the dimer and also that a homodimeric 

interface is formed [67]. Our results are in line with these observations supporting the notion 

that the PrP
C
 dimers formed in the cell membrane of mammalian cells under more 

physiological condition and in vitro in 0.06% SDS share structural features.  

 Several positions in the flexible tail of PrP between 80 and 126 containing pBpa mediate 

dimer crosslinking to a lesser but significant extent. Positions (107, 111, 113) with high 

specificity crosslinkings mark the beginning of the HD region. By contrast, positions in the 

HD region itself show lesser crosslinks, 5 positions examined with the untagged protein 

exhibit no specific crosslinkings. Since the pBpa mutation in position at the interface might 

interfere with the binding, more efficient pBpa crosslinkings might occur at region 

neighboring the actual binding site as it is apparent here. Thus, this observation is consistent 

with a picture where the HD region is involved in dimer formation by forming a homodimeric 

interface. Interestingly, the Tatzel's lab reported that in the absence of the HD region the 

disulfide dimer of PrP involving Cys131 was not formed underlining the essential role of the 

HD region in dimer formation [67].  

 Additionally to the protein segment involving the HD region, we also investigated PrP 

variants containing pBpa at either position 89 or 90. The results showing specific crosslinking 

with both variants corroborate earlier works from the Riesner lab using similar experimental 

conditions (0.06% SDS, pH 7.2) but recombinant hamster 90-231 PrP, where the N-terminal 

amino group of Gly90 is crosslinked to Glu152, or Glu196 or Asp202 in both the dimer and 
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monomeric protein [75,76]. The specificity of the interactions towards three out of the many 

acidic side chains of the protein indicates that the N-terminus of the recombinant protein is 

constrained at least to one side of the PrP fold of the protein and at the same time the very N-

terminal parts reserved some conformational freedom. Molecular modelling using some of 

these experimental constrains resulted in a structure where the 90-124 tail acquires stabile 

structural features and folds back along the 128-152 segment forming the homodimeric 

interface of the dimer [75,76]. Our results showing interaction sites along the whole 90-125 

segment is consistent with this structure and establishes a link between the dimer observed 

with prion proteins anchored to the plasma membrane of mammalian cells and dimer 

observed with the recombinant prion protein in vitro 0.06% SDS. The pBpa-containing PrP 

variants as well as the methods established here, among other approaches may potentiate the 

direct testing of whether the dimer observed here is on the pathways of oligomerisation, 

fibrillization and possibly of the formation of PrP
Sc

, by triggering the process from the 

covalently crosslinked dimer forms. 

   In conclusion, our results show that the N-terminal flexible tail, approximately between 90 

and 124 aa of PrP, acquires some stabile, structurally constrained conformations in the dimer 

formed at low SDS concentration in vitro and, similarly to the dimer formed in the 

mammalian cell membrane, likely forms a homodimeric interface involving at least parts of 

the HD. The methodology established here provides an easy access to non-natural amino acid-

containing PrP variants and, in combination with mass spectrometry analysis, could also 

facilitate mapping the interface of PrP molecules in PrP
Sc

 and in amyloid PrP preparations. 

 

Materials and Methods 

DNA cloning and plasmid constructs  
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   DNA oligos were obtained from Microsynth AG (Austria). The correct sequences for the 

expression cassettes in all plasmids generated in this study were confirmed by Sanger 

sequencing (Microsynth AG). All plasmids were constructed with standard molecular biology 

techniques, briefly as follows. 

 

Cloning of pET22b-PrP and pET41-PrP plasmids 

   The cDNA of mouse PrP (mPrP) (Uniprot entry P04925) was from the Caughey lab [95]. 

Bacterial expression plasmid vectors pET22b and pET41 (Merck Millipore) and preparation 

of the pET22b-PrP and pET41-PrP plasmids was carried out as follows. The DNA fragments 

encoding the wild type (mPrP) or 3F4-epitope- harbouring (mPrP3F4) mPrP [96] (aa 23-231), 

preceded by a methionine in case of pET41-PrP vectors and followed by a cysteine and a stop 

codon for both vectors, were amplified by PCR with the following primers: pET22b-PrP5 and 

pET22b-PrP3 or pET41-PrP5 and pET41-PrP3 respectively (for sequences see Table S1). 

The methionine, cysteine and stop codons were introduced into the amplicons with the 

respective PCR primers. The PCR fragments were purified using Nucleospin Gel and PCR 

Clean-up Kit (MACHEREY-NAGEL) after agarose gel electrophoretic separation and the 

purified DNA fragments were digested overnight by EcoRI (pET22b) or by NdeI and HindIII 

(pET41). The 5’ end of the pET22b insert was left uncut. In case of vector pET22b the 

prepared PCR fragments were inserted between the MscI and EcoRI restriction sites of the 

plasmid after the PelB signal. In case of vector pET41 the prepared PCR fragments were 

inserted between the NdeI and HindIII sites of the plasmid. 

   The insertion of tyrosine (Tyr) or Amber stop (Amb) codons into the coding sequence of 

mPrP encoded by the pET41-PrP plasmids was carried out by QuikChange site directed 

mutagenesis. The Tyr or Amber codons (denoted by: *) were inserted at the 5’ or 3’ side of 
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the mPrP’s KKRPK motif, resulting in the following variants of both mPrP and mPrP3F4: 

MYKKRPK (Tyr inserted before KKRPK) and M*KKRPK (Amber before KKRPK) or 

KKRPKY (Tyr after KKRPK) and KKRPK* (Amber after KKRPK). The mutagenesis 

primers were the following, in the respective order of the constructs above: petmutMYKfwd, 

petmutMYKrev, petmutMAmbKfwd, petmutMAmbKrev, KKRPKYfwd, KKRPKYrev, 

KKRPKAmbfwd, KKRPKAmbrev. (For oligonucleotide sequences see Table S1).  

Cloning of the pRSET-B expression vectors  

   Bacterial expression plasmid vector pRSETB was obtained from Thermo Fisher Scientific. 

For the sequences of the oligonucleotides used for PCR and linker ligation (Table S2). The 

nucleic acid sequences of the bacterial expression vectors pRSETB-mPrP and pRSETB-

mPrP-mCh and the amino acid sequences of the proteins encoded by them: the full length 

mouse prion protein followed by a cysteine residue and in the second case by an mCherry 

fusion tag, 6xHis and a Cys (referred to in short as the wild type untagged and the wild type 

tagged mPrP proteins, in order to contrast their corresponding amber codon mutants, in the 

text), can be found in Supplementary Data, respectively. 

   The pRSETB-mPrP and pRSETB-mPrP-mCh plasmids were used also as parental plasmid 

vectors for generating the amber stop codon mutants : pRSETB-mPrP(S131X), pRSETB-

mPrP(E206X), pRSETB-mPrP(E210X), where the numbers denote the positions of mutations 

to amber codon (noted as X) in respect to the full length sequence of mPrP protein including 

the signal sequences 1-23. Mutations were carried out by QuikChange site directed 

mutagenesis with the following primers: mPrPS131Ambfwd, mPrPS131Ambrev, PrP-E206X-

fw, PrP-E206X-rev, PrP-E210X-fw and PrP-E210X-rev, respectively. 

   The vectors pRSETB-mPrP-RE and pRSETB-mPrP-mCh-RE were generated from 

pRSETB-mPrP and pRSETB-mPrP-mCh vectors for cloning purposes, by the introduction of 
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unique restriction enzyme sites (EagI, BsmBI and MluI) at strategic positions into the prion 

protein coding sequence using QuikChange site directed mutagenesis. The DNA 

oligonucleotide primers used for the silent mutagenesis were, in respective order of the 

introduced restriction sites shown above: EagIfwd, EagIrev, BsmBIfwd, BsmBIrev, MluIfwd, 

MluIrev.  

   The following mutations were introduced into the sequence of mPrP encoded by the 

pRSETB-mPrP-RE and pRSETB-mPrP-mCh-RE vectors: W80X, G89X, Q90X, N107X, 

K109X, V111X, G113X, A116X, A117X, G118X, A119X, V120X, V121X, L124X, G125X, 

G126X, Y127X, M128X, L129X, M133X or R135X. The mutations were introduced to both 

plasmids by linker ligations using the linkers (Table S3). The procedure was carried out 

briefly, as follows. 

   The pRSETB-mPrP-RE and pRSETB-mPrP-mCh-RE plasmids were digested with the 

appropriate restriction endonulease pairs for each mutant (Table S3 for mutations and 

respective restriction endonuclease pairs), purified with NucleoSpin DNA purification kit, 

(MACHEREY-NAGEL) and the appropriate DNA linker or linkers were ligated between the 

two sticky ends of the plasmid (Table S3; for the oligonucleotides making up the DNA 

linkers, Table S2). When a fragment of the prion protein coding sequence was reconstituted 

from two or more linkers, all 5’ termini of the oligonucleotides at the linker junctions were 

phosphorylated. 

  

Expression and purification of proteins 

   Recombinant wild type and pBpa-mutant prion proteins with and without an mCherry 

fusion tag were produced in E. coli BL-21(DE3) protein expression strain based on published 
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protocols for wild type [97] and for site-specific incorporation of pBpa into proteins for the 

pBpa-mutants [98], as follows.   

 

   For the wild type proteins the pRSETB expression plasmids carrying the mPrP or mPrP-

mCherry genes (pRSETB-mPrP and pRSETB-mPrP-mCh) were transfected into competent 

E.coli BL21(DE3) cells, and transformant cells were selected on Luria-Bertani (LB) agar 

plates in presence of 100 µg/ml  ampicillin. In case of the pBpa-mutant proteins, first the 

pEVOL-pBpF plasmid [99]  expressing the cognate tRNA and the amino acyl transferases and 

possessing a chloramphenicol resistance gene, was transfected into competent E.coli 

BL21(DE3) cells. This plasmid was kindly provided by the laboratory of P. Schultz (The 

Scripps Res. Inst.) Transformant cells were selected on LB-agar plates in presence of 34 

µg/ml chloramphenicol and competent cells were prepared by CaCl2 method [100]. These 

pre-transformed cells were used in the second step to transfect the pRSETB-expression 

plasmids harboring the amber codon mutant-prion genes of interest and possessing an 

ampicillin resistance gene. Successful transformants were selected on LB-agar plates in 

presence of both of the antibiotics, ampicillin: 100 µg/ml and chloramphenicol: 34 µg /ml, 

and were used to produce the recombinant proteins, as follows. For both WT and pBpa-

mutant protein expressions, single colonies were picked from the selection plates to inoculate 

starter cultures of 50 ml LB media, which were grown overnight at 37 °C in presence of the 

corresponding antibiotics, ampicillin 50 µg/ml or both ampicillin and chloramphenicol (50 

µg/ml and 17 µg/ml, respectively). Volumes of 600 ml LB media with the corresponding 

antibiotics were inoculated from the starter cultures to yield 0.01 OD600 density and were 

cultured further at 37 °C under high aeration (in Erlenmeyer beakers of two liters and 

agitation at 280 rpm). When the density reached 0.5-0.6 O.D600 the cultures were induced for 

protein expression: for the wild type proteins IPTG (Thermo Fisher Scientific) was added at a 
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0.9 mM final concentration, for the pBpa-mutant proteins (also the Tyr-mutant and wild type 

mPrPmCherry proteins used for mass spectrometry verification of pBpa insertion) both 0.9 

mM IPTG and 0.02% L-arabinose (Sigma-Aldrich) were added and also 1 mM pBpa 

(BACHEM) (freshly dissolved in 1 M NaOH) was supplemented to the culture at this time. 

The induced cultures were further grown typically for four hours at 37 °C, or ten hours at 28 

°C (we found no substantial difference in yield between the two conditions). Longer culture 

times at 37 °C for the mCherry tagged proteins resulted harvested bacterial pellets with 

colorless halo–indicative of the absence of mCherry and likewise the absence of protein 

expression as well, a condition that served us as a marker for optimizing the time length of the 

growth. Cells were harvested by centrifugation at 2704 x g for 15 min at 4 °C, and were 

resuspended in 100 mM NaCl supplemented with 0.5 mM PMSF (Sigma-Aldrich), 1x 

concentration of Protease Inhibitor Cocktail (Sigma-Aldrich). The bacterial cells were 

disrupted on ice by sonication (Sonifier Cell Disruptor B-30, Branson Sonic Power Co, USA) 

applying a 30 s on- and 30 s off-pulse repeated for seven times, and the lysate was centrifuged 

at 60,480 x g for 50 min at 4 °C. The insoluble inclusion bodies, containing the proteins of 

interest sedimented in the pellet, were collected and solubilized in 30 ml of Buffer A: 6 M 

Gn-HCl (Alfa Aesar (Thermo Fisher Scientific)), 10 mM Tris, 100 mM Na2HPO4-2H2O, pH 

8.0, for 1 h by stirring on ice. After centrifugation (60,480 x g, 50 min, 4 °C) the supernatant 

was applied to Ni-NTA agarose (MACHEREY-NAGEL) of 3 ml bed-volume pre-equilibrated 

by buffer A, and the suspension was gently mixed on a rocker for 30 minutes on ice to allow 

binding of the proteins to the Ni-NTA beads. The suspension was sedimented by 

centrifugation (750 x g, 3 min, 4 °C) and the pelleted beads were washed two times using 

buffer B: 1 M GnHCl, 10 mM Tris, 100 mM Na2HPO4.2H2O, pH 8.0, and centrifugation at 

750 x g for 3 min at 4 °C. Next, a redox buffer: 1 M GnHCl, 10 mM Tris, 100 mM 

Na2HPO4.2H2O, 0.5 mM PMSF, 1x concentration of Protease Inhibitor Cocktail, 5 mM 
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GSSG (Sigma-Aldrich), 10 mM GSH (Sigma-Aldrich), pH 8.0, was added to the pelleted 

beads and the suspension was kept on ice while gently mixing on a rocker for ~16 h to refold 

the prion protein [101,102]. The refolded protein-bead suspension was poured onto an empty 

column. The flow through was kept to test for the presence of unbound proteins, and the 

beads were washed by using 75 ml of washing buffer: 10 mM Tris, 100 mM Na2HPO4.2H2O, 

20 mM imidazole (Sigma-Aldrich), pH 5.8. The proteins were eluted by elution buffer: 10 

mM Tris, 100 mM Na2HPO4.2H2O, 500 mM imidazole, pH 5.8 collecting about 6 fractions of 

1 ml. Fractions collected were tested for the presence of protein of interest using SDS-PAGE 

with ProSieve QuadColor prestained protein marker (Lonza) and those containing most of the 

protein were pooled together and were dialyzed in dialysis buffer: 20 mM CH3COONa, pH 

5.5, at 1:1000 excess volume for about 18 h at 4 °C with three changes. Dialyzed proteins 

were tested on SDS-PAGE their concentration was measured by Bradford method [103] and 

the yield of the protein expression was estimated. Aliquots of 1 mL of the dialyzed proteins 

were flash-frozen by liquid nitrogen and were stored at -80 °C for later use. 

 

Mass spectrometry analysis of pBpa insertion into proteins 

   For mass spectrometry analysis all protein samples were run on 10% polyacrylamide SDS 

gels at reducing conditions. Protein bands were excised from gels and were in-gel digested for 

mass spectrometry analysis according to the protocol at http://msf.ucsf.edu/protocols.html. 

Briefly: gel bands were cut to little pieces, washed, disulfide-bridges were reduced with DTT 

(dithiothreitol, Sigma-Aldrich), free sulphydrils were alkylated with IAM (iodoacetamide, 

Sigma-Aldrich) and proteins were digested with trypsin (sequencing grade modified porocine 

trypsin, Promega) at 37 °C for 4 h. Tryptic peptides were extracted and analysed by MALDI-

TOF (Bruker Reflex III) using DHB (2,5 dihydroxybenzoic acid) as matrix, in positive 

reflectron mode. Peptide sequences were confirmed by MS/MS analysis acquired on a 
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nanoLC coupled LCQ-Fleet (Thermo Fisher Scientific) ion trap mass spectrometer. To test for 

correct insertion of the pBpa amino acid into a desired amber codon coded position, we chose 

position 131 of mPrP and generated two mutants for this position: one coding for a tyrosine 

[mPrP(S131Y)mCherry] and another for an amber stop codon to initiate insertion of pBpa 

[mPrP(S131pBpa)mCherry]. The tyrosine mutant serves as a control, given that the tRNA-

RNA synthetase pair may preserve some potency for being charged by tyrosine over pBpa.  

The tyrosine mutant was expressed in two conditions: in LB culture media (-pBpa) or in LB 

media supplemented with pBpa amino acid (+pBpa). In parallel, the amber codon mutant was 

expressed in pBpa-supplemented LB media. For a thorough verification of pBpa vs. tyrosine 

incorporation, mass spectrometry analysis was performed not only on these three protein 

samples but also on mixtures of purified pBpa- and Tyr-mutant grown in presence of pBpa 

samples {mPrP(S131Y)mCherry and [mPrP(S131pBpa)mCherry, +pBpa], respectively} 

containing the two at various percentages, such as:  75:25, 88:12 and 94:6% of pBpa- to Tyr-

mutant (Mixture 1-3, respectively, on Fig. S1). MALDI-TOF mass spectrometry analysis of 

the six samples confirmed that both tyrosine-mutant proteins contained only Tyr at position 

131, irrespective of whether the culture media contained pBpa or not, whereas in the pBpa-

mutant protein sample only para-benzoyl-phenylalanine could be detected at position 131. In 

the mixtures of the two proteins, both Tyr and pBpa containing corresponding fragments 

could be identified with the exception of the third mixture, made up of 94% pBpa-mutant and 

6% of Tyr-mutant, where only pBpa-containing corresponding fragments were detected. 

Based on these we can conclude that a correctly inserted pBpa is present in more than 88% in 

the produced pBpa-mutant protein samples. 

  

 

Conformational stability analysis by urea denaturation assay 
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   Conformational stabilities of the wild type and pBpa-mutant prion proteins were compared 

by using a method based [86], as follows. An urea (Sigma-Aldrich) concentration gradient 

treatment was applied to the proteins in presence of small amount of reducing agent that can 

reduce the single disulfide bond present in the structure of the prion protein upon unfolding. 

Samples of 7.44 µM protein were treated by increasing concentrations of urea, starting from 0 

to 5 M in steps of one molar increment, in presence of 20 mM DTT (Sigma-Aldrich)  in 

phosphate buffer saline (PBS), pH 7.4. Treatments were applied for 2.5 h while samples were 

kept at RT and on a mini-rotator (Bio RS-24 from BioSan, Latvia). After treatment, excess 

amount (50 mM) of N-Ethylmaleimide (NEM) (Sigma-Aldrich) was added and samples were 

incubated for additional 1 h to block the reduced thiol groups of the unfolded protein 

population and DTT. Laemmli SDS sample buffer with no reducing agent was added and 

samples were tested on 10% SDS-PAGE followed by RAMA staining [104] to visualize the 

non-reduced and reduced populations present in the protein samples. Since we found that the 

width of the transition region and midpoint were sensitive to the actual experiment/condition 

of the protein preparation, for the stability comparisons we performed the assay side-by-side 

for samples to be compared. Also, we have repeated the unfolding experiments at least on 

three separate protein preparations.  

 

Photo-crosslinking of  PrP dimers  

   Photo-crosslinking of pBpa-mutant PrP dimers were performed on samples of 6 µM protein 

in PBS, pH 7.4 buffer containing 0.06% SDS (SERVA) that favored dimerization and 

crosslinking of dimers at highest amounts (Fig. S3). Volumes of 200 µl sample in 1.5 ml 

microfuge tubes were placed on ice at a distance of 5 cm from the light bulbs [105] and were 

irradiated by 365 nm UV light for 2 h to give highest amounts of crosslinked proteins [98] 

using a Crosslinker CL-1 (Herolab Gmbh, Germany) apparatus, producing a total UV energy 
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of 18.598 J/cm
2
. As negative controls, the wild type proteins containing no pBpa were also 

included in the experiment. For each sample non-irradiated control pairs were also prepared 

that were incubated in similar conditions but at dark.  

 

   To estimate the amount of the background, non-specifically associated and crosslinked 

dimers similar experiments were performed with each protein at higher, 2% SDS condition 

that favors a monomeric form of the prion protein [76]. Above this SDS % the amount of 

background crosslinked dimers did not decrease anymore (Fig. S5).   

 

Quantification and statistical analysis 

Estimation of the dimer-crosslinking efficiencies 

   Crosslinked samples were tested on either 10% or 12% SDS-PAGE, in case of the mCherry-

tagged and untagged mPrP proteins, respectively, followed by RAMA staining (Fig. 3, 4, 7, 

S6 and S7). The percentage of photo-crosslinked dimer to monomer ratios were assessed by 

gel-densitometry using the ImageJ 1.48v program [106]. As discussed earlier, in case of the 

mCherry tagged protiens, the mCherry fusion tag presents cleavage products when 

incubated/boiled in the sample-buffer that results additional bands below dimer- and 

monomer-levels on the gel (Fig. 3, 4 and S6). Assuming that the mCherry split occurs the 

same way in a monomeric or a dimeric (or multimeric) species, the dimer percentage can be 

calculated using the percent area of the band of dimer considering the areas of the monomeric 

and dimeric proteins as total (similarly as for the untagged mPrP protein variants). Performing 

such evaluations for both irradiated and control, non-irradiated (-) samples that were kept at 

dark  and using these latest values for subtractions (for both types of proteins), the crosslinked 

dimer percentages can be corrected for the “background” fraction of dimers not attributable to 

UV-crosslinking. The wild type protein samples treated the same way also provide a non-zero 
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value (perhaps representing dimer products cross-linked at some non-pBpa positions) that was 

also considered to interpret the pBpa-specific values obtained for the mutants. Similar 

evaluation of samples at 2% SDS condition was also performed to have an estimate of a 

(maximum possible) nonspecifically crosslinked dimer amount.  

   All crosslinking experiments were performed at least on three independent protein samples 

(n ≥ 3) originating from different expressions. For data representations the mean ± SD of 

these values is used. Differences between the values obtained at 0.06% and 2% SDS 

conditions for each protein examined were tested for significance using unpaired Student's t-

test with GraphPad Prism software. Asterisks indicate as follows,  *: p<0.05, **: p<0.01 and 

***: p<0.001. 

 

Circular dichroism spectroscopy 

Far-UV circular dichroic (CD) spectra of samples of the untagged wild type and pBpa-mutant 

mPrP proteins, typically of 0.1 to 0.2 mg/ml concentrations, were recorded at room 

temperature using a Jasco J-810 spectropolarimeter, using a 1 mm path length quartz cuvette 

as the sample holder. CD spectra were recorded between 180 to 260 nm, at 100 nm/min 

speed, using 2 nm bandwidth and 4 s integration time, sensitivity standard, 1 nm data pitch, 

and accumulating three spectra for each sample. For each type of protein variant spectra were 

recorded in three conditions: in the initial conditions of a monomeric-state (in MilliQ water) 

and in dimer-state favoring conditions of 0.06% SDS, PBS pH 7.2, after either crosslinking by 

UV light for 2 h or without crosslinking (on parallel samples kept at dark for 2 h). The 

corresponding buffer-only spectra for each condition and sample were recorded similarly as 

the sample spectra and were used to subtract from sample spectrum before calculating the 

mean residue molar ellipticities (degrees square centimeter per decimole). Spectra were 
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analyzed for secondary structure composition based on Micsonai et al. [107] using the 

algorithm BeStSel (http://bestsel.elte.hu). Recordings were performed on two to three separate 

crosslinking experiments. 
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Highlights 

 The transition of monomeric PrP
C
 to oligomeric PrP

Sc
 is the key event of TSE. 

 Over 25 site-specific p-benzoyl-L-phenylalanine mutants were used to interrogate the 

dimeric interface of PrP. 

 The N-terminal part of PrP is integral part of the dimer interface. 

 These prion-variants may facilitate studying various oligomeric/fibrillar PrP 

structures. 
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