72 research outputs found

    A LEAST-SQUARE COMPUTATION METHOD FOR SMOOTHING AND DIFFERENTIATION OF TWO-DIMENSIONAL DATA

    Get PDF
    A computation method to smooth and differentiate data of the z=/(x, y) kind is introduced. Requiring only that the datapoints be equi-distant in x and equi-distant in y, smoothing parameters can be calculated for general use. The greatest advantage of the method is that even higher-level mixed partial derivatives can be calculated directly from the datapoints

    Ab initio molecular dynamics study of liquid methanol

    Get PDF
    We present a density-functional theory based molecular-dynamics study of the structural, dynamical, and electronic properties of liquid methanol under ambient conditions. The calculated radial distribution functions involving the oxygen and hydroxyl hydrogen show a pronounced hydrogen bonding and compare well with recent neutron diffraction data, except for an underestimate of the oxygen-oxygen correlation. We observe that, in line with infrared spectroscopic data, the hydroxyl stretching mode is significantly red-shifted in the liquid. A substantial enhancement of the dipole moment is accompanied by significant fluctuations due to thermal motion. Our results provide valuable data for improvement of empirical potentials.Comment: 14 pages, 4 figures, accepted for publication in Chemical Physics Letter

    Accurate Treatment of Large Supramolecular Complexes by Double-Hybrid Density Functionals Coupled with Nonlocal van der Waals Corrections

    Get PDF
    In this work, we present a thorough assessment of the performance of some representative double-hybrid density functionals (revPBE0-DH-NL and B2PLYP-NL) as well as their parent hybrid and GGA counterparts, in combination with the most modern version of the nonlocal (NL) van der Waals correction to describe very large weakly interacting molecular systems dominated by noncovalent interactions. Prior to the assessment, an accurate and homogeneous set of reference interaction energies was computed for the supramolecular complexes constituting the L7 and S12L data sets by using the novel, precise, and efficient DLPNO-CCSD(T) method at the complete basis set limit (CBS). The correction of the basis set superposition error and the inclusion of the deformation energies (for the S12L set) have been crucial for obtaining precise DLPNO-CCSD(T)/CBS interaction energies. Among the density functionals evaluated, the double-hybrid revPBE0-DH-NL and B2PLYP-NL with the three-body dispersion correction provide remarkably accurate association energies very close to the chemical accuracy. Overall, the NL van der Waals approach combined with proper density functionals can be seen as an accurate and affordable computational tool for the modeling of large weakly bonded supramolecular systems.Financial support by the “Ministerio de Economía y Competitividad” (MINECO) of Spain and European FEDER funds through projects CTQ2011-27253 and CTQ2012-31914 is acknowledged. The support of the Generalitat Valenciana (Prometeo/2012/053) is also acknowledged. J.A. thanks the EU for the FP7-PEOPLE-2012-IEF-329513 grant. J.C. acknowledges the “Ministerio de Educación, Cultura y Deporte” (MECD) of Spain for a predoctoral FPU grant

    RPBE-vdW Description of Benzene Adsorption on Au(111)

    No full text
    Density functional theory has become a popular methodology for the analysis of molecular adsorption on surfaces. Despite this popularity, there exist adsorption systems for which commonly used exchange-correlation functionals fail miserably. Particularly those systems where binding is due to van der Waals interactions. The adsorption of benzene on Au(111) is an often mentioned such system where standard density functionals predict a very weak adsorption or even a repulsion, whereas a significant adsorption is observed experimentally. We show that a considerable improvement in the description of the adsorption of benzene on Au(111) is obtained when using the so-called RPBE-vdW functional
    corecore