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ABSTRACT 

In this work, we present a thorough assessment of the performance of some representative 

double-hybrid density functionals (revPBE0-DH-NL and B2PLYP-NL), as well as their parent 

hybrid and GGA counterparts, in combination with the most modern version of the nonlocal 

(NL) van der Waals correction to describe very large weakly-interacting molecular systems 

dominated by noncovalent interactions. Prior to the assessment, an accurate and homogenous set 

of reference interaction energies were computed for the supramolecular complexes constituting 

the L7 and SL12 data sets by using the novel, precise, and efficient DLPNO-CCSD(T) method at 

the complete basis set limit (CBS). The correction of the basis set superposition error and the 

inclusion of the deformation energies (especially for the S12L set) have been determining for 

obtaining precise DLPNO-CCSD(T)/CBS interaction energies. Among the density functionals 
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evaluated, the double-hybrid revPBE0-DH-NL and B2PLYP-NL with the three-body dispersion 

correction provide remarkably accurate association energies very close to the chemical accuracy. 

Overall, the nonlocal van der Waals approach combined with proper density functionals can be 

seen as an accurate and affordable computational tool for the modeling of large weakly-bonded 

supramolecular systems. 
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INTRODUCTION 

Noncovalent interactions (NCIs) are considered to be weak but crucial forces governing the 

tridimensional organization and reactivity of molecular biological systems, such as proteins and 

nucleic acids, and their understanding is the key for the development of drug design, 

crystallinity, and design of novel materials by controlling their self-assembly. NCIs can be seen 

as a combination of electrostatic and dispersion forces; the latter, which mainly arise from long-

range electron correlation effects, can be properly captured by highly correlated wave function 

methods. Coupled-cluster theory with singles, doubles, and perturbatively connected triple 

excitations [CCSD(T)] in combination with large basis sets has become the “gold-standard” 

method to accurately deal with these weak but important forces in supramolecular systems.1-3 Its 

use is, however, restricted to small- or medium-size molecular systems due to its unfavorable 

computational O(N7) scaling, where N is related to the molecular size. In this sense, the 

longstanding quest for efficient highly correlated wave function methods for applications in large 

(real-life) systems is still an active research field.  

Very recently, Neese et al. have successfully coupled the domain-based local pair natural 

orbital (DLPNO) approach with the CCSD(T) method providing a highly correlated near-linear-

scaling methodology known as DLPNO-CCSD(T).4 The DLPNO-CCSD(T) method has proved 

to offer promising average errors in relative energies of approximately 0.5 kcal/mol for a 

challenging test set of medium-size organic molecules, and it is thus increasingly being applied 

for benchmarking calculations in large systems, where the canonical CCSD(T) approach is 

unaffordable.5 This methodology therefore not only opens the door for rigorous studies in large 

molecular systems but also offers the opportunity to benchmark and parameterize less-costly 

quantum chemical methods in the context of NCIs.   
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On the other hand, Density Functional Theory (DFT) has become the standard tool for a vast 

array of quantum chemistry applications owing to its more favorable computational cost ranging 

from O(N3) to O(N5). Nevertheless, common density functionals (DFs) are not capable of totally 

capturing the long-range correlation phenomena required for the adequate description of NCIs.6-8 

Over the last years, much effort within the DFT framework has been made to develop 

approximations that allow the accurate treatment of dispersion forces between molecular 

entities.9-10 Among the most modern approaches, the atom-pairwise dispersion-corrected DFT 

approach, developed by Grimme et al., known in its current version as DFT-D3, is a manner of 

dealing with NCIs with a reasonable compromise between computational cost and accuracy.11-14 

A less popular but seamless and general approach known as van der Waals Density Functional 

Theory (vdW-DFT) has recently received a great deal of attention due to its low degree of 

empiricism.15-16 The vdW-DFT approach accounts for the long-range electron correlation effects 

by means of an explicit nonlocal (NL) correlation functional that depends on the electron density 

at two different points in space (r and r’) and is added to the general expression of the exchange-

correlation energy functional. In the modern and efficient formulation developed by Vydrov and 

Van Voorhis (VV10),15 commonly known as DFT-NL, the NL correction can be coupled easily 

to any standard DF.  

Compared with the extended DFT-D3 approach, the NL correction has been used with a 

relatively scarce number of standard DFs. Hujo and Grimme assessed the performance of 

different Generalized Gradient Approximation (GGA) and hybrid density functionals in 

combination with the NL correction.16 More recently, the NL correction was merged with more 

sophisticated double-hybrid density functionals (DHDFs).17-18 These studies have proven that 

DFT-NL can be considered as a robust electronic structure method capable of dealing with the 
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challenging problems dominated by intermolecular NCIs independently of the functional of 

choice. However, despite the great success of the NL approximation combined with standard 

DFs for reliable studies in supramolecular chemistry, its performance has been mainly evaluated 

in small- and medium-size supramolecular systems where benchmark energies, usually obtained 

at CCSD(T) level with extrapolation to infinite basis set, are available. Therefore, investigating 

the behavior of the DFT-NL correction in very large systems would provide valuable 

information about the reliability of this methodology for treating NCIs in real-life problems.  

In this contribution, we first provide an accurate and homogeneous set of reference interaction 

energies for large supramolecular complexes by using the novel DLPNO-CCSD(T) approach at 

the complete basis set limit (CBS). For that purpose, we have employed the L719 and S12L20 data 

sets, which are formed by large supramolecular complexes of different nature (vide infra). 

Second, we use the DLPNO-CCSD(T) interaction energies to assess the performance in large 

supramolecular complexes of the NL correction combined with two representative double-hybrid 

density functionals (revPBE0-DH-NL and B2PLYP-NL), which behaved remarkably accurate 

for the S22 and S66 training sets.17 A comparison with their corresponding hybrid (revPBE0-NL 

and B3LYP-NL) and GGA (revPBE-NL and BLYP-NL) analogues is also performed to assess 

the performance across the hierarchy of DFT-based methods.21 

 

THEORETICAL MODELS AND COMPUTATIONAL DETAILS 

Reference interaction energies for the L719 and S12L22 training sets were computed with the 

DLPNO-CCSD(T) method.4 As mentioned above, DLPNO-CCSD(T) can be seen as a highly 

correlated wave function method whose accuracy is comparable to the canonical CCSD(T) 

counterpart but with a dramatically reduced computational cost. Default values for all internal 
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thresholds of the methodology (TCutPairs, TCutPNO and TCutMKN) were used as suggested by 

the developers.5 For further details, the reader is referred to the original literature.4,23 The 

Ahlrich’s def2-TZVPP basis set24 was employed for the DLPNO-CCSD(T) calculations. 

Interaction energies at the DLPNO-CCSD(T)/def2-TZVPP level were extrapolated to the 

complete basis set limit (CBS) according to the hybrid scheme proposed by Sherrill et al.25 and 

Jurecka et al.,26 and further successfully applied by Liakos et al. within the LPNO framework 

(Eq. 1).27-28 

( )/ / 2/ ( )/ 2 2/ 2

2/ ( )

( ) ( )DLPNO CCSD T CBS HF CBS MP CBS DLPNO CCSD T def TZVPP MP def TZVPP

corr corr corr

MP CBS DLPNO CCSD T

corr

E E E E E

E E

− − − −

−

= + + − =

= + ∆
 (1) 

Note that by using this scheme we assume that the residual difference between DLPNO-

CCSD(T) and MP2 correlation energies has a less marked dependence on basis set than the MP2 

correlation energy itself. The CBSMPE /2  term was calculated by a two-point extrapolation scheme 

using the Dunning’s cc-pVDZ and cc-pVTZ basis sets with ordinal numbers X = 2 and Y = 3, 

respectively, where the Hartree−Fock ( /HF CBSE ) and the correlation ( 2/MP CBS

corrE ) terms were 

computed as 

XY

XYHFYXHF
CBSHF

ee

eEeE
E

αα

αα

−−

−−

−

−
=

)/()/(
/      (2) 

and  

ββ

ββ

YX

EYEX
E

YMP

corr

XMP

corrCBSMP

corr
−

−
=

)/(2)/(2
/2 .    (3) 

The α and β exponents were set at 4.42 and 2.46 as reported recently in the literature.29 

The relevance of the basis set superposition error (BSSE) in medium supramolecular systems 

has been evidenced, for example, by Janowski et al.30 in the case of the coronene dimer. 

Furthermore, the seminal works on the L719 and the S12L22 data sets made use of the BSSE 
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correction, since large basis sets close to the CBS limit remain prohibitive due to the size of the 

supramolecular systems. In this work, the basis set convergence was analyzed in detail for the 

supramolecular complex C3GC, which can be considered as a representative example of the L7 

and S12L test sets (Table S1). The interaction energy computed at MP2/CBS(cc-pVDZ/cc-

pVTZ) (–64.69 kcal/mol) provides a small deviation of only 1.9% compared to CBS(cc-

pVTZ/cc-pVQZ) (–63.50 kcal/mol) when the counterpoise (CP)31 correction is included. All the 

MP2 energies were therefore calculated at the CBS(cc-pVDZ/cc-pVTZ) level and were CP-

corrected to reduce the BSSE. Table S2 clearly shows a notable BSSE effect on the systems 

considered in L7 and S12L data sets at the MP2/CBS level. 

Deformation energies (vide infra) were computed at the spin-scaled MP2 method (SCS-

MP2).32 This method has proven to attenuate the overbinding tendency of MP2 in π-π 

supramolecular complexes similar in nature but smaller in size than those considered herein.33 

All MP2 and SCS-MP2 calculations made use of the ‘resolution of the identity’ (RI) and the 

‘chain-of-spheres’ (COSX) techniques, for Coulomb and exchange integrals, respectively, to 

alleviate the computational cost. The corresponding matching auxiliary basis sets (cc-pVDZ/C 

and cc-pVTZ/C, and cc-pVDZ/JK and cc-pVTZ/JK) were employed throughout.34 Grids for the 

COSX approximation were increased from defaults to Gridx6.35 

Two families of DFs have been employed in this work: the Becke-Lee-Yang-Parr (BLYP) and 

the revised Perdew-Burke-Ernzerhof (revPBE). For each family, the Generalized-Gradient 

Approximation (GGA), the hybrid (H), and the double-hybrid (DH) DFs were used. Note that the 

GGA is considered as the baseline for further improvements (rungs) within each family. A 

general expression for the exchange-correlation (xc) density functionals utilized in this work and 

coupled to the nonlocal approach can be expressed as:  
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2
HF HF PT2 PT2[ ] w (1 w ) [ ] (1 w ) [ ] w [ ]HF PT NL

xc x x c c cE E E E E Eρ ρ ρ ρ= + − + − + + ,           (4) 

where ][ρxE  and ][ρcE  correspond to the GGA exchange and correlation energy terms, 

respectively, weighted by the scaling parameter wi. The HF

xE  and 2PT

cE  terms are, respectively, 

the exact exchange HF-like energy and the correlation energy obtained at the Møller–Plesset 

perturbation theory up to second order.36 Note that the HF

xE , 2PT

cE , and NL

cE  terms are evaluated 

with the orbitals arising from the solution of the Kohn–Sham one-electron equations but 

discarding the last two terms of Eq. 4. Table 1 presents a detailed description for the composition 

of all the exchange-correlation functionals used in this work. 

Table 1. Composition of the Exchange-Correlation Functionals Used along This Work 

Functional Type ][ρxE  ][ρcE  wHF
a wPT2

b b
c
 Ref. 

revPBE0-DH-NL Double-Hybrid GGA revPBE PBE 0.50 0.125 5.7 17 

revPBE0-NL Hybrid GGA revPBE PBE 0.25 0 4.2 37 

revPBE-NL GGA revPBE PBE 0 0 3.6 38-39 

        

B2PLYP-NL Double-Hybrid GGA B88 LYP, VWN 0.53 0.270 7.8 36 

B3LYP-NL Hybrid GGA B88 LYP, VWN 0.20 0 4.6 40-41 

BLYP-NL GGA B88 LYP 0 0 4.0 42-43 
a Weight of the HF-like exchange. b Weight of the perturbative term. c Values used for the adjustable parameter b in 

the NL

cE  term. 

 

The DFs under study were merged with the NL approximation (DFT-NL), such as it was 

proposed by Vydrov and Van Voorhis.15 The NL energy functional is added to the exchange-

correlation energy functional non-self-consistently.16-17 In the DFT-NL approach, the NL energy 

functional depends on the electron density and the sort-range (b) and long-range (C) adjustable 

parameters (the reader is referred to the original work for further details, Ref. 15). The short-

range attenuation parameter b used here for the density functionals was carefully fitted using the 
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S2244-45 and S6646-47 data sets,17 whereas the long-range parameter C is fixed to its original value 

C = 0.0093 (its optimization leads to only minor improvements).16-17 To assess the errors of the 

different DFT-NL functionals, the mean signed error (ME), the mean absolute error (MAE), and 

the maximum absolute error (MAX) are employed. A negative ME indicates an overbinding 

trend, while positive ME values signify an underestimation in the interaction energy. 

The DFT-NL calculations were performed with the def2-TZVP basis set.24,48 Although the 

combination of DFT calculations (with dispersion corrections) and a basis set of triple-zeta 

quality (cc-pVTZ) has been shown to provide interaction energies with a small BSSE,49 this error 

can be large enough for the supramolecular systems investigated herein. Consequently, all the 

interaction energies calculated were counterpoise corrected (see Eq. S1 in the Supporting 

Information). The computational effort for the DFT calculations was significantly reduced in all 

cases by making use of the ‘resolution of the identity’ (RI)50 and the ‘chain-of-spheres’ 

(COSX)51 techniques, for Coulomb and exchange integrals, respectively. The COSX 

approximation was extensively applied by using the overlap fitting procedure described in Ref. 

52. Large grids (Gridx6), especially required for the treatment of noncovalent interactions, have 

been employed in the COSX procedure. The corresponding matching auxiliary basis sets def2-

TZVP/C and def2-TZVP/JK were employed throughout.34 The quadrature grids needed for 

numerical integration of DFs were also increased (Grid6) with respect to defaults, as it is 

strongly recommended for intermolecular interaction energies, as well as the corresponding 

thresholds for converging energies in the self-consistent field procedure (TightSCF). A larger 

grid for the NL approximation was also used (Vdwgrid4). For comparison, double-hybrid 

B2PLYP-D3 calculations were carried out by means of the Grimme’s dispersion correction (D3) 

using the Becke-Johnson damping function.11-12,53-55 The three-body dispersion correction 

Page 9 of 25

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

10

(EABC)11 has been evaluated in all cases. All the calculations were carried out by using the ORCA 

3.0 program package.35 

 

RESULTS AND DISCUSSION 

1.1. Benchmark energies for large supramolecular complexes. 

Two sets of very large supramolecular complexes (known as L7 and S12L) have been 

specially designed to evaluate the performance of accurate quantum-chemical methods with low 

computational cost for “real-life” applications (see Figure S1 and S2 for the structure of the 

supramolecular complexes of L7 and S12L, respectively). The L7 set proposed by Sedlak et al.19 

contains seven supramolecular complexes intentionally selected to be mostly dispersion-

dominated (aliphatic-aliphatic and π–π interactions) and their size ranges from 48 to 112 atoms. 

The reference association energies reported before for L7 were computed at the QCISD(T)/CBS 

level.19 The S12L data set includes twelve supramolecular complexes (involving both neutral and 

charged species) dominated by non-polar, π-stacking, H-bonding, and electrostatic cation-dipolar 

interactions. In contrast to the L7 set, the reference interaction energies in the S12L set, proposed 

in the seminal work of Grimme et al., were estimated from (back-corrected) experimental 

binding affinities.20 Nevertheless, the authors admitted some uncertainty about the validity of 

these gas-phase interaction energies for benchmarking purposes. In a further step, Ambrosetti et 

al. provided accurate values for the interaction energy of six host-guest complexes of the S12L 

set at the diffusion quantum Monte Carlo (DQMC) level.56 More recently, Hesselmann et al. 

calculated the interaction energies for the complexes of S12L by using intermolecular symmetry-
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adapted perturbation theory combined with a density-functional theory description of the 

interacting molecules.57  

Due to the difference in the methods employed to estimate the reference binding energies in L7 

and S12L (theoretical and experimental data), a homogeneous set of benchmark interaction 

energies computed at the same level of theory is a clear demand for these data sets. Hence, 

interaction energies at the DLPNO-CCSD(T)/CBS level of theory have been consistently 

computed for L7 and S12L (Table 2). Hesselmann et al.57 showed that the deformation energies 

can be important for compounds of S12L and they should be taken into account to provide 

accurate interaction energy values. Additionally, it was proven that the deformation energies can 

be overestimated by MP2 due to its overbinding tendency in π-π supramolecular complexes 

(especially in compounds 3a and 3b). The authors corrected the deformation energies for S12L 

using the SCS-MP2 method since it provides a better description for π-π interactions than MP2 

does.33 Deformation energies (see the Supporting Information for further details) were therefore 

corrected at SCS-MP2/CBS for S12L (Table S3). Deformation energies for complexes of L7 

were supposed to be small and were not corrected.19 Table S4 collects the different interaction 

energy terms of the total interaction energy computed for L7 and S12L supramolecular systems. 
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Table 2. Interaction Energies (in kcal/mol) Computed for the L7 and S12L Data Sets at the 

DLNPO-CCSD(T)/CBS level 

Data set Complex DLPNO-CCSD(T)/CBS
a
 QCISD(T)/CBS

b
 “Experimental”

c
 DQMC

d
 

L7 C2C2PD −24.81 −24.36   

 C3A −17.98 −18.19   

C3GC −29.86 −31.25   

CBH −11.64 −11.06   

GCGC −13.21 −14.37   

GGG −1.68 −2.40   

PHE −22.81 −25.76   

      

S12L 2a −30.65  −29.9 −27.2 

 2b −23.04  −20.5 −17.2 

3a  −23.68  −24.3  

3b −23.08  −20.4  

4a -e  −27.5 −25.8 

4b -e  −28.7  

5a −33.40  −34.8 −33.4 

5b −22.98  −21.3  

6a −79.79  −77.4 −81.0 

6b −77.82  −77.0  

7a −123.89f  −131.5  

7b −22.74  −22.6 −24.1 
a This work. b Reference interaction energies computed at the QCISD(T) level and extrapolated to the 
complete basis set limit (CBS) by means of a hybrid scheme as explained in Ref. 19. For the correlated 
component of the energy, a relatively small 6-31G*(0.25) basis set was employed. c Gas-phase interaction 
energies were obtained back-correcting experimental values for binding affinities in solution according to 
Ref. 20. d The stochastic DQMC electronic structure method using Slater-Jastrow trial wave functions was 
employed to compute the reference interaction energies as explained in Ref. 56. e Calculations for these 
complexes at the DLPNO-CCSD(T)/def2-TZVPP did not converge due to the high number of interacting 
electron pairs between the two moieties originated by the huge amount of close carbon-carbon contacts. f 

The CBSMPE /2  term was computed according to Eq. 2 and 3 by using Ahlrichs basis sets with double and 

triple-ζ quality (def2-SVP and def2-TZVPP, respectively) due to the inexistent definition of the auxiliary 
cc-pVDZ/C basis set for Fe. The exponential α and β values were set to 10.39 and 2.40, respectively.29 
 

The combination of the two sets of systems provides a wide range of interaction energies for 

very large supramolecular complexes ranging from −1.68 kcal/mol in the stacked guanine trimer 

GGG of the L7 set (Figure S1) to −123.89 kcal/mol in the cucurbit[7]uril@ferrocene-based 
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complex of S12L (Figure S2). Broadly speaking, the DLPNO-CCSD(T) association energies 

present small differences with respect to the previous values available in the literature, especially 

for the L7 set, which were obtained from a purely theoretical treatment.19 The largest 

discrepancy obtained for the L7 set is found for the PHE complex (an amyloid fragment 

consisting in three phenylalanine residues in mixed H-bonded-stacked conformation, Figure S1), 

for which a value of −22.81 kcal/mol is calculated at DLPNO-CCSD(T) and of −25.76 kcal/mol 

at QCISD(T)/CBS. The mean absolute error (MAE) between the reported interaction energies 

and our suggested DLPNO-CCSD(T) values is of only 1.07 kcal/mol. The experimental back-

corrected values provided for S12L20 differ from our suggested DLPNO-CCSD(T) energies with 

a MAE of around 2 kcal/mol. The largest (absolute) deviation is found for the doubly positive 

charged ferrocene/adamantane derivative 7a, for which a difference of 7.61 kcal/mol (6 %) is 

obtained. This may stem from the important role of the counterions in the stabilization of the 

doubly charged 7a complex, which would increase the experimental free interaction energy used 

in obtaining the values presented in the fifth column of Table 2. For the rest of supramolecular 

complexes, the proposed DLPNO-CCSD(T) interaction energies remain close to the previously 

reported values. We therefore consider that the interaction energies computed at DLPNO-

CCSD(T)/CBS can be used as reference values for benchmark studies and they are employed in 

the following discussion if not otherwise indicated. 

1.2. Performance of NL-corrected BLYP and revPBE functional families 

Recently, several double-hybrid functionals merged with the NL approach were tested in the 

small S22 and S66 data sets and they were shown to provide a very good performance to deal 

with NCIs of different nature.17 However, their behavior when increasing the molecular size has 

not been analyzed so far. We have evaluated the performance of the B2PLYP-NL and revPBE0-
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DH-NL functionals as well as their hybrid (B3LYP-NL and revPBE0-NL) and GGA (BLYP-NL 

and revPBE-NL) analogues in the large L7 and S12L test sets. The B2PLYP-NL and revPBE0-

DH-NL functionals have been selected because they exhibited the best performance in the S22 

and S66 data sets.17  

 

Figure 1. ME (red bar) and MAE (grey-border bar) computed for the different DFs coupled to 

the NL approach (the B2PLYP-D3 method is included for comparison purposes) for L7 (a), 

S12L (b), and considering both sets as one (c). The DLNPO-CCSD(T)/CBS interaction energies 

given in Table 2 are used as a reference. Note that the MAE (grey-border bar) has been mirrored.  

 

Figure 1 summarizes the ME and MAE errors for the association energies of the L7 and S12L 

data sets obtained for the different DFs coupled to the NL approach with respect to the reference 

DLPNO-CCSD(T)/CBS values given in Table 2. The values of the errors (ME, MAE, and MAX) 

and of the interaction energies are given in the Supporting Information (Tables S5–S7). ME, 

MAE, and MAX deviations with respect to reference values reported in Ref. 19 and 22 for L7 

and S12L, respectively, have also been included for comparison purposes (Tables S8–S10 and 

Figure S3). Similar to the DLPNO-CCSD(T)/CBS interaction energies, deformation energies for 
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complexes of S12L have been included for all the density functionals. Despite their different 

flavor according to the Jacob’s ladder (GGA, hybrid, and double-hybrid character), the two 

families of DFT-NL functionals perform strikingly well for the L7 set with MAE errors below 

2.00 kcal/mol (Figure 1a and Table S5). Note that it is being admitted now that the standard 

“chemical accuracy” (1 kcal/mol) is too stringent when interaction energies of very large 

supramolecular complexes are computed and deviations around 2−3 kcal/mol can be perfectly 

accepted.58 A closer inspection of Figure 1a clearly reveals that the double-hybrid B2PLYP-NL 

and revPBE0-DH-NL functionals exhibit a very good performance within their corresponding 

family of DFs providing small MAE errors of less than 1.25 kcal/mol. For example, in the BLYP 

family, the MAE noticeably decreases from 1.51 kcal/mol (BLYP-NL) and 1.62 kcal/mol 

(B3LYP-NL) to 1.17 kcal/mol (B2PLYP-NL). A similar behavior is also found for the revPBE 

family with MAE values of 1.91, 1.22, and 1.25 kcal/mol for revPBE-NL, revPBE0-NL, and 

revPBE0-DH-NL, respectively. Both double-hybrid functionals show a systematic 

overestimation of the dispersion forces governing the supramolecular associates with negative 

ME errors of −0.88 and −0.65 kcal/mol for B2PLYP-NL and revPBE0-DH-NL, respectively. 

The overestimation can be easily understood since many-body dispersion effects are not included 

in the DFT-NL functionals. It should be mentioned that in both double-hybrid functionals the 

MAX error is found for complex C3GC with values below 2.60 kcal/mol (Table S5).  

Recently, the repulsive three-body approximation (EABC), usually employed with the pairwise 

dispersion correction developed by Grimme et al., has been successfully combined with the NL 

approximation to correct the interaction energies in large supramolecular complexes and the 

cohesive energies calculated for the anthracene crystal.22,59 The inclusion of the EABC term has a 

significant effect in both double-hybrid functionals. For revPBE0-DH-NL, the EABC term gives 
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rise to a decrease of the MAE error (1.25 vs. 1.01 kcal/mol) and a change of sign in the ME 

(−0.65 vs. 0.40 kcal/mol) indicating a small underestimation with respect to the reference 

interaction energies. For B2PLYP-NL, the MAE decreases from 1.17 to 0.88 kcal/mol upon 

addition of the EABC term, and the ME moves from −0.88 to 0.18 kcal/mol, which is the lowest 

ME value computed along the series. It should be also noted that the performance of B2PLYP-

NL is similar to that found for its B2PLYP-D3 homologous, which can be thus judged also as a 

high-quality method, presenting a slightly smaller MAE of 0.69 kcal/mol. Nevertheless, 

B2PLYP-D3 does not benefit from the additional EABC correction with the corresponding 

increase of the MAE error up to 1.54 kcal/mol (Figure 1a). It should be also mentioned that the 

MAX error, once the EABC correction is introduced in both double-hybrid density functionals, is 

found for complex C2C2PD (Table S5). 

Regarding the hybrid and GGA density functionals, it is necessary to stress the good 

performance of the hybrid revPBE0-NL functional with a MAE of 1.22 kcal/mol, which is even 

slightly smaller than that found for its double-hybrid analogue. In general, the incorporation of 

the three-body dispersion correction in the GGA and hybrid functionals has also an improvement 

in terms of MAE (Figure 1a), with the sole exception of the hybrid B3LYP-NL functional, which 

slightly worsens upon addition of the EABC dispersion term (from 1.62 to 1.88 kcal/mol). In terms 

of performance, the revPBE family incorporating the EABC term gives in overall interaction 

energies for the L7 set slightly closer to the reference energy values than the BLYP family with 

MAEs in the 1.01−1.26 kcal/mol range. Nevertheless, the double-hybrid B2PLYP-NL functional 

provides the most accurate interaction energies among the two families with ME and MAE going 

beyond the chemical accuracy (0.18 and 0.88 kcal/mol, respectively). 
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Moving to the S12L set of complexes, a general overestimation in the association energy is 

computed for all DFs under study with negative ME values (Figure 1b and Table S6). Due to this 

overbinding, the inclusion of the three-body EABC correction improves the results in terms of 

MAE errors in all cases. Similarly to the L7 data set, the double-hybrid density functionals (and 

their variants with the three-body dispersion correction, revPBE0-DH-NL+EABC and B2PLYP-

NL+EABC) exhibit the best performance with the smallest MAE along the two density functional 

families. For instance, the MAE (ME) values are found to be 4.71 (−4.47) and 3.01 (−2.53) 

kcal/mol for revPBE0-DH-NL and revPBE0-DH-NL+EABC, respectively. A similar behavior is 

predicted for B2PLYP-NL and B2PLYP-NL+EABC in terms of MAE errors (5.95 and 4.39, 

respectively). The general overestimation and the improvement with the EABC correction is in 

concordance with previous results where the overbinding and the role of the three-body EABC 

correction in large supramolecular complexes were also discussed.22 It is necessary to mention 

that we neglect at this stage the many-body corrections higher than EABC terms, which might still 

contribute in systems with large and permanent multipole moments, but are, however, beyond 

the scope of the present study. Note that B2PLYP-D3 with the addition of the EABC term behaves 

slightly better than their analogues, revPBE0-DH-NL+EABC and B2PLYP-NL+EABC (Figure 1b). 

Among the GGA and hybrid density functionals, the best performance is found for the 

revPBE-NL+EABC with ME and MAE errors of −4.38 and 4.62 kcal/mol, respectively. 

Nevertheless, the rest of GGA and hybrid functionals upon inclusion of the EABC correction show 

MAEs below 5.61 kcal/mol (Table S6). Figure S4 displays the absolute errors for each 

compound of S12L according to the nature of the interaction. Compounds 7a and 7b dominated 

by cation-dipolar and H-bonding interactions, respectively, present the maximum errors for all 

density functionals whereas compounds mainly dominated by non-polar and π-π interactions 
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(compounds 2a, 2b, 3a and 3b) are better described (Figure S4). For further comparison, 

interaction energies reported by Risthaus et al.22 for S12L using the GGA PBE functional with 

the def2-TZVP basis set were extracted and compared to the DLPNO-CCSD(T)/CBS reference 

values proposed in this work (Table S14). The PBE-NL+EABC functional outperforms the 

accuracy of the revPBE-NL+EABC with MAE and ME values of 3.76 and −2.52 kcal/mol, 

respectively.22 Furthermore, the PBE functional coupled to the D3 approximation and the three-

body dispersion term behaves remarkably accurate with a MAE value of only 1.87 kcal/mol for 

the S12L data set, corroborating the accuracy of the D3 approach. 

By combining the L7 and S12L test sets (Figure 1c), the relative deviations resemble the 

picture obtained for S12L due to the larger MAE and ME values computed for this set. Again, 

the inclusion of the three-body dispersion correction improves the results in all GGA, hybrid, and 

double-hybrid DFs due to the general overbinding of the interaction energies computed along the 

different DFs merged with the NL approach. Interestingly, the revPBE0-DH-NL and B2PLYP-

NL functionals with the EABC correction show promising results with MAEs of 2.19 and 2.95 

kcal/mol, respectively, for the joint L7+S12L data set containing very large supramolecular 

complexes of diverse interacting nature. Likewise, the ME values are computed to be as small as 

−1.32 kcal/mol for revPBE0-DH-NL+EABC and −1.96 kcal/mol for B2PLYP-NL+EABC. It is 

worth noting that the conclusions drawn by using the DLPNO-CCSD(T)/CBS interaction 

energies presented here or by using the previously reported reference data (Ref. 19 and 20) are in 

good accord (compare Figure 1 with Figure S3). Again, both double-hybrid revPBE0-DH-

NL+EABC and B2PLYP-NL+EABC provide the smallest MAEs (3.08 and 2.51 kcal/mol, 

respectively) along the series for the joint L7+S12L data set. Therefore, the rung of double-

hybrid density functionals (revPBE0-DH and B2PLYP-NL) coupled to the NL approach, which 
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have demonstrated a great performance in the smaller S22 and S66 test sets,17 is now 

consolidated as accurate functionals for challenging and “real-life” supramolecular systems, 

standing close to the chemical accuracy. 

 

CONCLUSIONS 

In this contribution, we provide an accurate and homogenous set of reference interaction 

energies for the L7 and S12L sets calculated by using the DLPNO-CCSD(T) method 

extrapolated to the complete basis set limit. The correction of the basis set superposition error 

and the incorporation of the deformation energies (especially for the S12L set) have been crucial 

for obtaining accurate interaction energies. These interaction energy values are taken as a 

reference to assess the performance of the double-hybrid density functionals, revPBE0-DH-NL 

and B2PLYP-NL, as well as their hybrid and GGA counterparts, which include the nonlocal van 

der Waals correction formulated by Vydrov and Voorhis to describe noncovalent interactions. 

Among the density functionals evaluated, the double-hybrid revPBE0-DH-NL and B2PLYP-NL 

with the three-body dispersion correction behave remarkably accurate with mean absolute errors 

in the range of the chemical accuracy for the large weakly-bound molecular systems of the L7 

and S12L sets. The performance of the double hybrid density functionals is irrespective of the 

reference interaction energies employed. These results therefore confirm that the nonlocal van 

der Waals approach combined with modern density functionals can be seen as an accurate and 

affordable computational tool for the modeling of “real-life” supramolecular assemblies 

governed by noncovalent interactions. 
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Supporting Information. Chemical structures of the supramolecular complexes and interaction 

energies computed at DLPNO-CCSD(T)/CBS and with the different DFT-NL functionals for the 

weakly-bonded molecular complexes of the L7 and S12L sets. Absolute errors according to the 

nature of the interaction computed for S12L. This material is available free of charge via the 

Internet at http://pubs.acs.org.  
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