50 research outputs found

    satuRn : Scalable Analysis of differential Transcript Usage for bulk and single-cell RNA-sequencing applications

    Get PDF
    Alternative splicing produces multiple functional transcripts from a single gene. Dysregulation of splicing is known to be associated with disease and as a hallmark of cancer. Existing tools for differential transcript usage (DTU) analysis either lack in performance, cannot account for complex experimental designs or do not scale to massive scRNA-seq data. We introduce satuRn, a fast and flexible quasi-binomial generalized linear modelling framework that is on par with the best performing DTU methods from the bulk RNA-seq realm, while providing good false discovery rate control, addressing complex experimental designs and scaling to scRNA-seq applications

    satuRn: Scalable analysis of differential transcript usage for bulk and single-cell RNA-sequencing applications

    Get PDF
    Alternative splicing produces multiple functional transcripts from a single gene. Dysregulation of splicing is known to be associated with disease and as a hallmark of cancer. Existing tools for differential transcript usage (DTU) analysis either lack in performance, cannot account for complex experimental designs or do not scale to massive scRNA-seq data. We introduce satuRn, a fast and flexible quasi-binomial generalized linear modelling framework that is on par with the best performing DTU methods from the bulk RNA-seq realm, while providing good false discovery rate control, addressing complex experimental designs and scaling to scRNA-seq applications

    UPF2-dependent nonsense-mediated mRNA decay pathway is essential for spermatogenesis by selectively eliminating longer 3'UTR transcripts

    Get PDF
    During transcription, most eukaryotic genes generate multiple alternative cleavage and polyadenylation (APA) sites, leading to the production of transcript isoforms with variable lengths in the 3' untranslated region (3'UTR). In contrast to somatic cells, male germ cells, especially pachytene spermatocytes and round spermatids, express a distinct reservoir of mRNAs with shorter 3'UTRs that are essential for spermatogenesis and male fertility. However, the mechanisms underlying the enrichment of shorter 3'UTR transcripts in the developing male germ cells remain unknown. Here, we report that UPF2-mediated nonsense-mediated mRNA decay (NMD) plays an essential role in male germ cells by eliminating ubiquitous genes-derived, longer 3'UTR transcripts, and that this role is independent of its canonical role in degrading "premature termination codon" (PTC)-containing transcripts in somatic cell lineages. This report provides physiological evidence supporting a noncanonical role of the NMD pathway in achieving global 3'UTR shortening in the male germ cells during spermatogenesis

    Amplification of pico-scale DNA mediated by bacterial carrier DNA for small-cell-number transcription factor ChIP-seq

    Get PDF
    BACKGROUND: Chromatin-Immunoprecipitation coupled with deep sequencing (ChIP-seq) is used to map transcription factor occupancy and generate epigenetic profiles genome-wide. The requirement of nano-scale ChIP DNA for generation of sequencing libraries has impeded ChIP-seq on in vivo tissues of low cell numbers. RESULTS: We describe a robust, simple and scalable methodology for ChIP-seq of low-abundant cell populations, verified down to 10,000 cells. By employing non-mammalian genome mapping bacterial carrier DNA during amplification, we reliably amplify down to 50 pg of ChIP DNA from transcription factor (CEBPA) and histone mark (H3K4me3) ChIP. We further demonstrate that genomic profiles are highly resilient to changes in carrier DNA to ChIP DNA ratios. CONCLUSIONS: This represents a significant advance compared to existing technologies, which involve either complex steps of pre-selection for nucleosome-containing chromatin or pre-amplification of precipitated DNA, making them prone to introduce experimental biases. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-014-1195-4) contains supplementary material, which is available to authorized users

    On-the-fly selection of cell-specific enhancers, genes, miRNAs and proteins across the human body using SlideBase

    Get PDF
    Genomics consortia have produced large datasets profiling the expression of genes, micro-RNAs, enhancers and more across human tissues or cells. There is a need for intuitive tools to select subsets of such data that is the most relevant for specific studies. To this end, we present SlideBase, a web tool which offers a new way of selecting genes, promoters, enhancers and microRNAs that are preferentially expressed/used in a specified set of cells/tissues, based on the use of interactive sliders. With the help of sliders, SlideBase enables users to define custom expression thresholds for individual cell types/tissues, producing sets of genes, enhancers etc. which satisfy these constraints. Changes in slider settings result in simultaneous changes in the selected sets, updated in real time. SlideBase is linked to major databases from genomics consortia, including FANTOM, GTEx, The Human Protein Atlas and BioGPS. Database URL: http://slidebase.binf.ku.d

    Mutant CEBPA directly drives the expression of the targetable tumor-promoting factor CD73 in AML

    Get PDF
    The key myeloid transcription factor (TF), CEBPA, is frequently mutated in acute myeloid leukemia (AML), but the direct molecular effects of this leukemic driver mutation remain elusive. To investigate mutant AML, we performed microscale, in vivo chromatin immunoprecipitation sequencing and identified a set of aberrantly activated enhancers, exclusively occupied by the leukemia-associated CEBPA-p30 isoform. Comparing gene expression changes in human mutant AML and the corresponding mouse model, we identified , encoding CD73, as a cross-species AML gene with an upstream leukemic enhancer physically and functionally linked to the gene. Increased expression of CD73, mediated by the CEBPA-p30 isoform, sustained leukemic growth via the CD73/A2AR axis. Notably, targeting of this pathway enhanced survival of AML-transplanted mice. Our data thus indicate a first-in-class link between a cancer driver mutation in a TF and a druggable, direct transcriptional target

    An integrated expression atlas of miRNAs and their promoters in human and mouse

    Get PDF
    MicroRNAs (miRNAs) are short non-coding RNAs with key roles in cellular regulation. As part of the fifth edition of the Functional Annotation of Mammalian Genome (FANTOM5) project, we created an integrated expression atlas of miRNAs and their promoters by deep-sequencing 492 short RNA (sRNA) libraries, with matching Cap Analysis Gene Expression (CAGE) data, from 396 human and 47 mouse RNA samples. Promoters were identified for 1,357 human and 804 mouse miRNAs and showed strong sequence conservation between species. We also found that primary and mature miRNA expression levels were correlated, allowing us to use the primary miRNA measurements as a proxy for mature miRNA levels in a total of 1,829 human and 1,029 mouse CAGE libraries. We thus provide a broad atlas of miRNA expression and promoters in primary mammalian cells, establishing a foundation for detailed analysis of miRNA expression patterns and transcriptional control regions

    Transcriptional diversity and regulation across time and states

    No full text
    corecore