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Abstract 14 
 15 
Alternative splicing produces multiple functional transcripts from a single gene. Dysregulation of 16 
splicing is known to be associated with disease and as a hallmark of cancer. Existing tools for 17 
differential transcript usage (DTU) analysis either lack in performance, cannot account for complex 18 
experimental designs or do not scale to massive scRNA-seq data. We introduce satuRn, a fast and 19 
flexible quasi-binomial generalized linear modelling framework that is on par with the best performing 20 
DTU methods from the bulk RNA-seq realm, while providing good false discovery rate control, 21 
addressing complex experimental designs and scaling to scRNA-seq applications. 22 

Introduction 23 
 24 

Studying differential expression (DE) is one of the key tasks in the downstream analysis of RNA-seq 25 
data. Typically, DE analyses identify expression changes on the gene level. However, the widespread 26 
adoption of expression quantification through pseudo-alignment1,2, which enables fast and accurate 27 
quantification of expression at the transcript level, has effectively paved the way for transcript-level 28 
analyses. Here, we specifically address differential transcript usage (DTU) analysis, one type of 29 
transcript-level analysis that studies the change in relative usage of transcripts/isoforms within the 30 
same gene. DTU analysis holds great potential: previous research has shown that most multi-exon 31 
human genes are subject to alternative splicing and can thus produce a variety of functionally different 32 
isoforms from the same genomic locus3–5. The dysregulation of this splicing process has been reported 33 
extensively as a cause for disease6–9, including several neurological diseases such as frontotemporal 34 
dementia, Parkinsonism and spinal muscular atrophy, and is a well-known hallmark of cancer10. 35 
  36 
In this context, full-length single-cell RNA-Seq (scRNA-seq) technologies such as Smart-Seq211 and 37 
Smart-Seq312 hold the promise to further increase the resolution of DTU analysis from bulk RNA-seq 38 
data towards the single-cell level, where differences in transcript usage are expected to occur naturally 39 
between cell types. However, only a few bespoke DTU methods have been developed for scRNA-seq 40 
data and they lack biological interpretation. Indeed, methods specifically developed for scRNA-seq 41 
data are either restricted to exon/event level13,14 analysis (e.g. pinpointing exons involved in splicing 42 
events), or they can only pinpoint DTU genes without unveiling the actual transcripts that are 43 
involved15. Interestingly, many DTU methods for bulk RNA-seq do provide inference at the transcript 44 
level and their performance has already been extensively profiled in benchmark studies16–18. Based on 45 
a subset of the simulated RNA-seq dataset from Love et al.18 (see Methods), we show the performance 46 
of six DTU tools; DEXSeq19, DoubleExpSeq20, DRIMSeq21, edgeR diffSplice22, limma diffSplice23 and 47 
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NBSplice24 (Figure 1A). DEXSeq and DoubleExpSeq have a higher performance than the other methods. 48 
In addition, we observe that most methods, and DRIMSeq in particular, fail to control the false 49 
discovery rate (FDR) at its nominal level, which is in line with previous reports16–18. 50 
 51 

Figure 1: Performance and scalability evaluation of six DTU methods. A: Performance evaluation on the 52 
simulated bulk RNA-Seq dataset from Love et al.18. Each curve displays the performance of each method by 53 
evaluating the sensitivity (TPR) with respect to the false discovery rate (FDR). The three circles on each curve 54 
represent working points when the FDR level is set at nominal levels of 1%, 5% and 10%, respectively. The circles 55 
are filled if the empirical FDR is equal or below the imposed FDR threshold. DEXSeq and DoubleExpSeq clearly 56 
have the highest performances. Note that most methods, and DRIMSeq in particular, fail to control the FDR at 57 
its nominal level. B: Scalability with respect to the number of cells in a scRNA-Seq dataset. While all other 58 
methods scale linearly with an increasing number of cells, DEXSeq scales quadratically. As such, DEXSeq cannot 59 
be used for the analysis of large bulk and scRNA-Seq datasets. For all sample sizes, the number of transcripts in 60 
the datasets were set at 30.000. Note that NBSplice needed to be omitted from this analysis as it fails to converge 61 
on datasets with a large proportion of zero counts (see below). C: Scalability with respect to the number of 62 
transcripts in a scRNA-Seq dataset. While all other methods scale linearly with an increasing number of cells, 63 
BANDITS scales quadratically. Moreover, BANDITS failed to run on our system for datasets with 7.500 transcripts 64 
or more. As such, it had to be omitted from panels A and B. A performance and scalability evaluation of BANDITS 65 
on datasets with an (artificial) lower number of transcripts is provided in supplementary Figures S1 and S3. 66 
 67 
In order to assess DTU in single-cell applications, however, these bulk RNA-seq DTU tools should scale 68 
to the large data volumes generated by full-length scRNA-seq platforms, which can profile the 69 
transcriptome of several thousands of cells25–27 in a single experiment. In Figure 1B, we evaluate the 70 
required computational time in function of the number of sequenced libraries for a two-group DTU 71 
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analysis for 30,000 transcripts on a subset of the scRNA-seq dataset from Chen et al.28. In spite of its 72 
good performance, the popular tool DEXSeq already required more than five hours to analyze two 73 
groups of 32 cells and clearly does not scale to large bulk nor scRNA-seq datasets.  74 
 75 
In addition, DTU methods should allow for the analysis of datasets with large numbers of (unique) 76 
transcripts. The number of transcripts that are typically assessed depends on the coverage of the RNA-77 
seq experiment and the adopted filtering criteria in the data analysis workflow. As the coverage of 78 
RNA-seq experiments has increased rapidly over the past few years and can be expected to continue 79 
expanding, scalability towards large numbers of transcripts will be essential to enable a transcriptome-80 
wide view on the isoform usage changes. In Figure 1C, we perform a DTU analysis across a range of 81 
transcripts in a two-group comparison with 16 cells each, using the dataset from Chen et al. Here, we 82 
observed that the DTU tool BANDITS29 scales particularly poorly to large numbers of transcripts. More 83 
specifically, BANDITS did not complete the DTU analysis on the dataset with 7.500 transcripts within 84 
137 hours on our system (see Methods); therefore, larger analyses were omitted. As such, BANDITS 85 
had to be omitted from the analyses shown in Figures 1A and 1B. For a performance and scalability 86 
evaluation of BANDITS on datasets with an (artificial) lower number of transcripts, we refer to Figures 87 
S1 and S3. 88 
 89 
Besides scalability, several other issues arise when porting bulk RNA-seq DTU tools towards scRNA-90 
seq applications. Indeed, modeling scRNA-seq data often requires multifactorial designs, for instance 91 
when comparing expression levels across multiple cell types between multiple treatment groups. 92 
Accounting for multiple covariates, however, is not implemented in BANDITS, NBSplice and 93 
DoubleExpSeq, jeopardizing their utility for (sc-)RNA-seq DTU analysis. Another issue arises with the 94 
large numbers of zero counts in scRNA-seq data, which seems to be particularly problematic for 95 
NBSplice that fails to converge if the gene-level count of any of the samples or cells is zero. As such, 96 
NBSplice could not be evaluated in Figures 1B and 1C.  97 
 98 
Altogether, many of the existing DTU analysis tools are not well suited to analyze large bulk RNA-seq 99 
and full-length scRNA-seq datasets, leaving the great potential of these data largely unexploited. In 100 
light of these shortcomings we developed satuRn, which is an acronym for Scalable Analysis of 101 
differential Transcript Usage for RNa-seq data, a novel method for DTU analysis that (i) is highly 102 
performant, (ii) provides a good control of the false discovery rate (FDR) (iii) scales seamlessly to the 103 
large data volumes of contemporary (sc-)RNA-seq datasets, (iv) allows for modelling complex 104 
experimental designs, (v) can deal with realistic proportions of zero counts and (vi) provides direct 105 
inference on the biologically relevant transcript level. In brief, satuRn adopts a quasi-binomial (QB) 106 
generalized linear model (GLM) framework. satuRn provides direct inference on DTU by modelling the 107 
relative usage of a transcript, in comparison to other transcripts from the same gene, between groups 108 
of interest. To stabilize the estimation of the overdispersion parameter of the QB model, we borrow 109 
strength across transcripts by building upon the empirical Bayes methodology as introduced by Smyth 110 
et al.23. In order to control the number of false positive findings, an empirical null distribution is used 111 
to obtain the p-values, which are corrected for multiple testing with the FDR method of Benjamini and 112 
Hochberg30. Our method is implemented in an R package available at 113 
https://github.com/statOmics/satuRn and will be submitted to the Bioconductor project. 114 

Results 115 
 116 
We first evaluate the performance of our novel DTU method, satuRn, on publicly available simulated 117 
and real bulk RNA-seq data, as well as on real scRNA-seq data. In general, we found that the 118 
performance of satuRn was at least on par with the performances of the best tools from the literature. 119 
In addition, our method controls the FDR closer to the nominal level, on average. Second, we show 120 
that satuRn scales towards the large data volumes generated by contemporary bulk and single-cell 121 
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RNA-seq experiments, allowing for a transcriptome-wide analysis of datasets consisting of several 122 
thousands of cells, in only a few minutes. Finally, we analyze a large full-length scRNA-seq case study 123 
dataset, where we obtain highly relevant biological results on isoform-level changes between cell 124 
types that would have remained obscured in a canonical differential gene expression (DGE) analysis. 125 
 126 

Performance on simulated bulk RNA-seq datasets 127 
 128 
To evaluate the performance of satuRn, we adopt three simulated bulk RNA-seq datasets from 129 
previous publications. Dataset 1 was obtained from Love et al.18 and contains two groups of twelve 130 
samples each, which we subsample without replacement to evaluate 3vs3, 6vs6 and 10vs10 two-131 
group comparisons. Datasets 2 and 3 are the Drosophila melanogaster and Homo sapiens simulation 132 
studies from Van den Berge et al.31 and Soneson et al.17, which both contain two groups of five samples 133 
each. In brief, all datasets were constructed by generating sequencing reads based on parameters that 134 
are estimated from real bulk RNA-seq data. DTU between groups of samples was artificially introduced 135 
in the data, prior to the quantification of expression using either Salmon2 (dataset 1) or kallisto1 136 
(dataset 2 and 3). Notably, there are some methodological differences between the simulation 137 
framework of dataset 1 and that of datasets 2 and 3 with respect to the read generation and the 138 
simulation of DTU signal (see Methods). In terms of transcript filtering, we adopt two different 139 
strategies as implemented by edgeR32 and DRIMSeq21, which correspond to a lenient and more 140 
stringent filtering, respectively (see Methods). 141 
 142 
The result of the performance evaluation of satuRn with respect to other DTU methods on the three 143 
simulated bulk datasets is displayed in Figure 2. Figure 2A shows the average performance over three 144 
6 versus 6 subsamples for dataset 1, after filtering with edgeR. Figures 2B and 2C display the 145 
performance on datasets 2 and 3 after edgeR filtering, respectively. In all three datasets, satuRn 146 
outperforms NBSplice, edgeR diffsplice and limma diffsplice. Intriguingly, the performance of 147 
DRIMSeq varies strongly between the three datasets. This discrepancy may be explained by the 148 
different strategies for generating reads and introducing DTU between dataset 1, and, datasets 2 and 149 
3 (see methods). We furthermore find the performance of satuRn is on par with the best performing 150 
tools from the literature, DEXSeq and DoubleExpSeq. In addition, both satuRn and DoubleExpSeq 151 
provide a stringent control of the FDR, while DEXSeq and DRIMSeq are often too liberal, as reported 152 
previously18. 153 
 154 
We also evaluated the effects of sample size and different filtering criteria on the performance of the 155 
different DTU methods (see Figures S2, S3, S4 and S5). Neither sample size nor filtering criterion had 156 
a profound impact on the ranking of the performances of the different DTU methods; satuRn, DEXSeq 157 
and DoubleExpSeq remain the best performing methods overall. In addition, we studied the impact of 158 
using either raw count estimates or normalized abundance estimates (scaledTPM, see Methods) as 159 
input data for the DTU algorithms. We observed a slightly higher performance in all datasets when 160 
providing raw abundance estimates, except for Dataset 1 from Love et al.18. All performance 161 
evaluations in the body of this publication therefore were generated with raw count estimates as input 162 
data, except for Figure 2, panel A. For a full overview on the effects of sample size, filtering criteria 163 
and data input type, we refer to supplementary figures S2-S9.  164 
 165 
 166 
 167 
 168 
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Figure 2: Performance evaluation of satuRn on three simulated bulk RNA-Seq datasets. Each curve visualizes 169 
the performance of each method by displaying the sensitivity of the method (TPR) with respect to the false 170 
discovery rate (FDR). The three circles on each curve represent working points when the FDR level is set at 171 
nominal levels of 1%, 5% and 10%, respectively. The circles are filled if the empirical FDR is equal or below the 172 
imposed FDR threshold. The performance of satuRn is on par with the best tools from the literature, DEXSeq 173 
and DoubleExpSeq, for all datasets. In addition, our method consistently controls the FDR close to its imposed 174 
nominal FDR threshold. 175 
 176 

Performance on a real bulk RNA-seq dataset 177 
 178 
While simulation studies are common for evaluating the performance of DE analysis methods, there 179 
is currently no consensus on the simulation strategy that best mimics real (sc)RNA-seq data. In 180 
addition, simulation frameworks typically generate data according to parametric assumptions on the 181 
data-generating mechanism, thus potentially favoring DE methods that adopt similar distributional 182 
assumptions in their statistical model33. An alternative procedure is to non-parametrically modify a 183 
real dataset. Here, we obtained different subsamples from the large bulk RNA-seq dataset available 184 
from the Genotype-Tissue Expression (GTEx) consortium34, generating 9 datasets in total, i.e. 3 repeats 185 
for each of 3 sample sizes; 5 versus 5, 20 versus 20 and 50 versus 50 samples. We then artificially 186 
introduced DTU in these data by swapping transcript usages between groups of samples (see Methods 187 
for details). Again, we adopt two different filtering strategies as implemented by edgeR32 and 188 
DRIMSeq21 (see Methods). 189 
 190 
The results of the performance evaluation of satuRn on the real bulk datasets upon edgeR filtering is 191 
displayed in Figure 3. In agreement with the results obtained from the simulated bulk RNA-seq study, 192 
we observe that the performance of satuRn is on par with DEXSeq and DoubleExpSeq. Again, satuRn 193 
provides a conservative FDR control. While the FDR control of DoubleExpSeq is good overall, it appears 194 
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to become too liberal with increasing sample size. In this evaluation, DRIMSeq performs poorly, in 195 
contrast to simulated bulk RNA-seq datasets 2 and 3, but in line with the performance evaluation on 196 
the simulated bulk RNA-seq dataset 1. Note that DEXSeq, DRIMSeq and NBSplice were omitted from 197 
the analysis of the largest dataset (50 versus 50 samples), as these methods do not scale to such large 198 
datasets (Figure 1). Adopting the DRIMSeq-based filtering did not have a qualitative impact on the 199 
performance (Figure S6). 200 

Figure 3: Performance evaluation of satuRn on a real bulk RNA-Seq dataset. Each curve visualizes the 201 
performance of each method by displaying the sensitivity of the method (TPR) with respect to the false discovery 202 
rate (FDR). The three circles on each curve represent working points when the FDR level is set at nominal levels 203 
of 1%, 5% and 10%, respectively. The circles are filled if the empirical FDR is equal or below the imposed FDR 204 
threshold. The performance of satuRn is on par with the best tools from the literature, DEXSeq and 205 
DoubleExpSeq. In addition, satuRn consistently controls the FDR close to its imposed nominal FDR threshold, 206 
while DoubleExpSeq becomes more liberal with increasing sample sizes. Note that DEXSeq, DRIMSeq and 207 
NBSplice were omitted from the larger comparison, as these methods do not scale to large datasets (Figure1). 208 

Performance on real single-cell data 209 
 210 
Finally, we evaluate the performance of satuRn on single-cell RNA-seq data. As with the real bulk 211 
analysis, the single-cell datasets were generated by subsetting from three different real scRNA-seq 212 
datasets25,28,35 (see Methods). Again, we subsampled three repeats of different sample sizes, artificially 213 
introduced DTU with the swapping strategy and applied either the edgeR- or DRIMSeq-based filtering 214 
criterium (see Methods for details).  215 
 216 
By subsampling the Chen et al.28 dataset, we generated three repeats of two sample sizes, i.e. 20 217 
versus 20 and 50 versus 50 cells.  The results of the performance evaluation of satuRn on this dataset 218 
upon edgeR filtering is displayed in Figure 4.  The performance of satuRn is slightly better than that of 219 
the best tool from the literature, DoubleExpSeq. As compared to the evaluations on bulk data, we 220 
observe a performance drop for DEXSeq relative to satuRn and DoubleExpSeq. This, in combination 221 
with its poor scalability (Figure 1), greatly compromises the use of DEXSeq for the analysis of scRNA-222 
seq data. satuRn again provides a stringent control of the FDR, while the inference of DoubleExpSeq 223 
is too liberal, again becoming more problematic for larger sample sizes. Adopting the DRIMSeq filter 224 
did not have a qualitative impact on the performances (Figure S7). The results of the performance 225 
evaluations on the other two scRNA-seq datasets25,35 are in strong agreement with the results 226 
displayed here, with satuRn performing at least on par with DoubleExpSeq and satuRn additionally 227 
controlling the FDR around the nominal level (Figures S8 and S9). 228 
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Notably we found that the theoretical null distribution of the test statistics from satuRn failed to 229 
provide good FDR control in single-cell analyses (Figure S10). To obtain proper p-values with satuRn in 230 
single-cell applications, we therefore estimate the null distribution of the test statistic empirically (see 231 
Methods, satuRn paragraph). Note, that the use of the empirical null distribution in our bulk RNA-seq 232 
benchmarks does not affect the results because no deviations of the theoretical null distribution 233 
occur. However, the empirical null resulted in much improved FDR control in scRNA-seq datasets 234 
(Figure S10).  We therefore adopt the empirical null estimation as the default setting in satuRn. As 235 
such, all satuRn results in this publication are relying on the empirical null strategy. As a final remark, 236 
we likewise attempted to improve the FDR control of DoubleExpSeq. However, in all analyses with 237 
DoubleExpSeq we observed a large spike of p-values equal to 1, which poses a problem when 238 
estimating the empirical null distribution (Figure S11). Therefore, this strategy could not be used to 239 
improve the FDR control of DoubleExpSeq. 240 

 241 
Figure 4: Performance evaluation of satuRn on a real scRNA-Seq dataset. Each curve visualizes the performance 242 
of each method by displaying the sensitivity of the method (TPR) with respect to the false discovery rate (FDR). 243 
The three circles on each curve represent working points when the FDR level is set at nominal levels of 1%, 5% 244 
and 10%, respectively. The circles are filled if the empirical FDR is equal or below the imposed FDR threshold. 245 
The performance of satuRn is on par with the best tools from the literature, DEXSeq and DoubleExpSeq. In 246 
addition, our method provides a stringent control of the FDR, while DoubleExpSeq becomes more liberal with 247 
increasing sample sizes (see also Figure S6). Note that DEXSeq and DRIMSeq were omitted from the two largest 248 
comparisons, as these methods do not scale to large datasets (Figure1). NBSplice was omitted from all 249 
comparisons, as it does not converge on datasets with many zeros, such as scRNA-Seq datasets. 250 
 251 

Scalability benchmark 252 
 253 
We performed a computational benchmark of satuRn to investigate its scalability with respect to the 254 
number of samples/cells and the number of transcripts in an RNA-seq dataset. All scalability 255 
benchmarks were run on a single core of a Linux machine with an Intel(R) Xeon(R) CPU E5-2420 v2 256 
(2.20GHz, Speed: 2200 MHz) processor and 30GB RAM. The results are displayed in Figure 5. 257 
 258 
Figure 5A displays the scalability with respect to the number of cells in the dataset, while keeping the 259 
number of transcripts in the dataset fixed at 30.000. From the left panel, it is clear that DRIMSeq and 260 
especially DEXSeq scale very poorly with the number of cells in the dataset, which was already shown 261 
in Figure 1B. In the right panel, we focus on the four remaining methods. satuRn scales linearly with 262 
increasing numbers of cells, with a slope comparable to limma diffsplice. As such, satuRn is able to 263 
perform a DTU analysis on a dataset with two groups of 256 cells each and 30.000 transcripts in less 264 
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than three minutes. Note that BANDITS29 was not included in this benchmark, as it does not scale to 265 
datasets with this many transcripts. For a performance and scalability evaluation of BANDITS on 266 
datasets with a lower number of transcripts, we refer to Figure S1. NBSplice was also omitted as it fails 267 
to converge on datasets with a large proportion of zero counts. 268 
 269 
Figure 5B shows the scalability with respect to the number of transcripts in the dataset, while keeping 270 
the number of cells in the dataset fixed to two groups of 16 cells. As shown in Figure 1C, BANDITS, 271 
DEXSeq and DRIMSeq scale poorly to datasets with many transcripts. From the right panel, satuRn 272 
scales linearly with increasing numbers of transcripts, albeit with a steeper slope than edgeR diffsplice, 273 
DoubleExpSeq and limma diffsplice. Note, that the scalability of DTU analyses can be improved 274 
through parallelization, if this is allowed by the underlying algorithm. Parallel execution is 275 
implemented in satuRn and in all methods from the literature that were discussed in this manuscript, 276 
except for DoubleExpSeq and NBSplice. 277 

 278 
Figure 5: Scalability evaluation of satuRn on scRNA-Seq data.  A: Runtime with respect to the number of cells 279 
in a scRNA-Seq dataset. Left panel: it is clear that DRIMSeq and especially DEXSeq scale very poorly with the 280 
number of cells in the dataset. Right panel: Detailed plot of the remaining methods. satuRn scales linearly with 281 
increasing numbers of cells, with a slope that is comparable to that of limma diffsplice. As such, satuRn is able 282 
to perform a DTU analysis on a dataset with two groups of 256 cells each and 30.000 transcripts in less than 283 
three minutes. For all sample sizes, the number of transcripts in the datasets were set at 30.000. Note that 284 
NBSplice was not included in this analysis as it fails to converge on datasets with a large proportion of zero 285 
counts. B: Runtime with respect to the number of transcripts in a scRNA-Seq dataset. Left panel: DEXSeq, 286 
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DRIMSeq and especially BANDITS scale poorly to the number of transcripts in the dataset. Right panel: Detailed 287 
plot of the remaining methods.  satuRn scales linearly with increasing numbers of transcripts, but with a steeper 288 
slope than edgeR diffsplice, DoubleExpSeq and limma diffsplice. The number of cells in the dataset was set fixed 289 
to two groups of 16 cells. All scalability benchmarks were run on a single core. 290 
 291 
Altogether, we find that while several methods for DTU analysis exist, none are optimally suited for 292 
analyzing single-cell datasets. DRIMSeq, NBSplice, edgeR diffsplice and limma diffsplice have a much 293 
lower overall performance in our benchmarks. DEXSeq does not scale to large datasets. Finally, 294 
DoubleExpSeq does not support experimental designs that require an analysis with multiple additive 295 
effects, e.g. randomized complete block designs and designs where batch-effect correction is 296 
required, which are essential for many practical scRNA-Seq analysis settings36. In addition, it fails to 297 
control the FDR at the desired level, especially with increasing sample sizes. 298 

 299 

Case study 300 
 301 
We use satuRn to perform a DTU analysis on a subset of the single-cell (SMART-seq211) RNA-seq 302 
dataset from Tasic et al.35. In addition, we analyze the same dataset with DoubleExpSeq and limma 303 
diffsplice, which are the only other DTU methods that scale to large scRNA-seq datasets and have a 304 
reasonable performance in our benchmarks. In the original publication, the authors studied 305 
differential gene expression between cell types originating from two areas at distant poles of the 306 
mouse neocortex; the primary visual cortical area (VISp), which processes sensory information with 307 
millisecond timescale dynamics37–39 and the anterior lateral motor cortex (ALM), which displays slower 308 
dynamics related to short-term memory, deliberation, decision-making and planning40,41. Based on 309 
marker genes, Tasic et al.35 assigned all of the 23.822 cells from the scRNA-seq dataset to one of three 310 
cell classes; glutamatergic (excitatory) neurons, GABAergic (inhibitory) neurons or non-neuronal cells. 311 
The authors then further classified the neuronal cells into several subclasses based on their dominant 312 
layer of dissection and projection patterns (through a retrograde labelling experiment). Finally, these 313 
subclasses are further classified into cell types based on the expression of specific marker genes.  314 
 315 

DGE analysis with edgeR 316 
 317 
In their original DGE analysis, Tasic et al.35 obtained the largest number of differentially expressed 318 
genes between the cell types originating from the ALM and VISp regions of the glutamatergic L5 IT 319 
subclass (2.739 cells in total), where L5 refers to layer-of-dissection 5 and IT refers to the 320 
intratelencephalic projection type. Here, we first perform a DGE analysis with an edgeR-based 321 
workflow (see Methods) on the same comparisons between L5 IT cell types that were assessed by 322 
Tasic et al. Table 1 shows the number of differentially expressed genes between the groups of interest 323 
in column 4. 324 
 325 

DTU analysis with satuRn 326 
 327 
Next, we perform a DTU analysis for the same cell types using satuRn. In column 5 of Table 1, we 328 
display the number of differentially used transcripts for each comparison. We also show the number 329 
of unique genes in which we find evidence for changes in usage of at least one transcript (column 6). 330 
While the number of differentially used transcripts is lower than the number of differentially 331 
expressed genes in each of the contrasts, we did identify differentially used transcripts in all contrasts 332 
of interest. Most interestingly, we observe that the overlap between the differentially expressed 333 
genes and the genes in which we found evidence for DTU is very limited (Table 1, column 7). This 334 
shows that the information obtained from our DTU analyses are orthogonal to the results from the 335 
canonical DGE analyses, which has been reported previously for simulated bulk data18.  336 
 337 
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Table 1: Number of differentially expressed genes and differentially used transcripts in eight comparisons 338 
between cell types. The first three columns indicate the comparisons between ALM (column 2) and VISp (column 339 
3) cell types, respectively. Column 4 indicates the number of differentially expressed genes as identified with an 340 
edgeR analysis. Column 5 displays the number of transcripts that satuRn flagged as differentially used. Column 341 
6 shows the number of unique genes in which satuRn finds evidence of differential usage of at least one 342 
transcript. Column 7 displays the absolute number of genes that overlap between columns 4 and 6.  343 
 344 

Comparison 
Cell type 1 

(ALM) 
Cell type 2 

(VISp) 
DGE 

DTU 
Tx 

DTU 
Gene 

Overlap 

1 Cpa6 Gpr88 Batf3 203 24 15 1 
2 Cbln4 Fezf2 Col27a1 281 92 53 3 
3 Cpa6 Gpr88 Col6a1 Fezf2 154 7 5 0 
4 Gkn1 Pcdh19 Col6a1 Fezf2 231 33 22 1 
5 Lypd1 Gpr88 Hsd11b1 Endou 331 118 69 4 
6 Tnc Hsd11b1 Endou 595 193 112 10 
7 Tmem163 Dmrtb1 Hsd11b1 Endou 471 90 53 7 

8 Tmem163 Arhgap25 Whrn Tox2 197 63 40 1 

 345 

Gene set enrichment analysis 346 
 347 
We perform a gene set enrichment analysis (GSEA) on the three comparisons with most DE genes and 348 
most genes with evidence for DTU (comparisons 5, 6 and 7). Similar gene ontology categories are 349 
returned for the set of DGE genes and the set of DTU genes, with many of the enriched processes 350 
being biologically relevant in the context of this case study. Enriched gene sets include the gene 351 
ontology classes, synapse, neuron projection, synaptic signaling and cell projection organization. This 352 
shows that the complementary information brought by the DTU analysis is indeed biologically 353 
relevant. For an extensive overview of the GSEA of the set of DGE genes and genes with evidence of 354 
DTU in comparisons 5, 6 and 7, we refer to supplementary table 1.  355 
 356 

satuRn identifies biologically relevant DTU transcripts 357 
 358 
To display the utility of satuRn for identifying and visualizing DTU transcripts in scRNA-seq datasets, 359 
we focus on comparison #6 of the DTU analysis and discuss the gene P2X Purinoceptor 4 or P2rx4 360 
(Ensembl ID ENSMUSG00000029470), a gene which is part of a family of purinergic receptors that 361 
have been implicated in functions such as learning, memory and sleep. In the DGE analysis, no 362 
evidence for differential expression of P2rx4 was found at the gene level (FDR-adjusted p-value = 1). 363 
By contrast, in our DTU analysis the transcripts of P2xr4 displayed the highest statistical evidence for 364 
differential usage within the set of transcripts that could be assigned to the ontology class ‘neuron 365 
projection’42. The mean usage of transcript ENSMUST00000081554 is estimated to be 28.9% in Tnc 366 
cells and 75.9% in Hsd11b1 Endou cells (FDR-adjusted p-value = 1.22E-13). For transcript 367 
ENSMUST00000195963, the transcript usage changes from 58.2% in Tnc cells and 16.6% in Hsd11b1 368 
Endou cells (FDR-adjusted p-value = 1.79E-10). For the third transcript of P2rx4 that was assessed in 369 
our DTU analysis, ENSMUST00000132062, we found no statistical evidence for DTU (FDR-adjusted p-370 
value = 0.534). In Figure 6, we show the output for the visualization of the transcript usages for P2rx4 371 
as obtained from satuRn. Interestingly, the majority transcript in the Tnc cell type, 372 
ENSMUST00000195963, is not protein coding43. By contrast, the majority transcript in the Hsd11b1 373 
Endou cell type, ENSMUST00000081554, is coding for the P2X purinoceptor protein (UniProt ID 374 
Q9Z256). As such, the changes in transcript usage between both cell types represent actual biological 375 
differences in the functionality of the gene products, which may be relevant to the process of neuron 376 
projection. This functional difference would have remained obscured when only performing a 377 
canonical DGE analysis. 378 
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 379 
Figure 6: Differential transcript usage in the P2rx4 gene. Each panel shows transcript usage or gene expression 380 
across cells of the Tnc and Hsd11b1 cell types. For the transcript-level figures, the size of each datapoint is 381 
weighted according to the total expression of the gene in that cell, i.e. the gene counts per cell. The yellow 382 
diamonds indicate the estimated mean usage of a transcript for each cell type, as estimated by satuRn. The cyan 383 
and dark green diamonds indicate mean and median gene expression levels per cell type, respectively. The two 384 
top panels display the transcript usage across cells of the Tnc and Hsd11b1 Endou cell types of transcripts 385 
ENSMUST00000081554 and ENSMUST00000195963, respectively. The proportion of usage of the former 386 
transcript is clearly higher in Hsd11b1 Endou cells, while the latter transcripts is most abundant in Tnc cells. For 387 
the third transcript, ENSMUST00000132062 (bottom left panel) there is no evidence for differential usage 388 
between both cell types. In addition, there is no evidence for differential expression of P2rx4 on the gene level 389 
(bottom right panel). DTU and DGE significance levels are indicated in the figure headers.  390 
 391 

Comparison to limma diffsplice 392 
  393 
We also analyzed the case study dataset with limma diffsplice23. When running limma diffsplice with 394 
default settings, a large number of DTU transcripts was returned (Figure S12) and we observe that the 395 
p-values were shifted towards smaller values (Figures S13 and S14). Therefore, we adopted the same 396 
empirical null strategy as implemented in satuRn to post-process the results. While this dramatically 397 
decreased the number of significant DTU transcripts, limma diffsplice still identified more transcripts 398 
(i.e. true or false positives) than our method. However, when we inspected the transcripts that were 399 
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highly ranked in the top DTU list of limma diffsplice but lowly ranked in our top list, we found that 400 
most of these transcripts either originate from genes that are lowly expressed, or they are transcripts 401 
with a large fraction of zero counts (i.e. zero expression in a large percentage of cells). Limma diffsplice 402 
thus claims differential usage more often for transcripts that only contain little information for 403 
assessing DTU. This is depicted in Figure 7. 404 

Figure 7: Global comparison between DTU transcripts uniquely identified by satuRn, uniquely identified by 405 
limma diffsplice or by both methods. Left panel: Boxplots on the average gene-level count for the DTU genes 406 
identified by the respective methods. Transcripts uniquely identified by satuRn originate from genes that have 407 
a much higher gene-level count (averaged over cells) as compared to transcripts uniquely identified by limma 408 
diffsplice. Note that the y-axis is displayed on a log10 scale. Right panel: Violin plots indicating the fraction of 409 
cells in which the transcripts are expressed. Transcripts uniquely identified by satuRn are expressed, on average, 410 
in a much larger fraction of the cells. Conversely, transcripts identified as DTU uniquely by limma diffsplice often 411 
have no expression in a large fraction of the cells. The dark green diamond indicates the median fraction of cells 412 
in which the DTU transcripts are expressed. 413 
 414 
This behavior can be expected. Limma diffsplice tests for DTU by comparing the log-fold change in 415 
expression of transcript t with the average log-fold change in the expression of all transcripts 416 
belonging to the same gene as transcript t. As such, limma diffsplice does not incorporate any 417 
information on the absolute gene expression levels. In contrast, our quasi-binomial GLM framework 418 
models the log-odds of drawing a particular transcript t from the pool of transcripts in the 419 
corresponding gene. As a consequence, transcripts belonging to lowly expressed genes are correctly 420 
considered less informative in satuRn and are thus less likely to be picked up. For example, in Figure 421 
8A, we show that while our method estimates a mean usage of 7% in Tnc cells and 26% in Hsd11b1 422 
Endou cells (indicated by the gold diamond), the transcript is not identified as differentially used, given 423 
the low abundance of the corresponding gene and the highly variable single-cell level observations.  424 
 425 
Conversely, by looking at the transcripts that were highly ranked in our DTU list but lowly ranked in 426 
the top list of limma, we observe that our model is more likely to capture small changes in transcript 427 
usage that are stable across all cells and belong to genes that are highly expressed. An example of 428 
such a transcript is shown in Figure 8B. satuRn estimates a mean usage of 3% in Tnc cells and 6% in 429 
Hsd11b1 Endou cells. While this is only a minor change in transcript usage, satuRn still identifies this 430 
transcript as differentially used because the gene is highly expressed and the small change in usage is 431 
supported by a large number of cells. In case such small differences in usage are not considered 432 
biologically meaningful, it is possible to set a threshold on the minimal desired difference. Finally, by 433 
not taking into account gene abundances, limma is more influenced by outlying observations that have 434 
a low gene-level abundance (Figure 8C). Indeed, DTU claims by limma are driven by differences in raw 435 
mean usages of transcripts. In Figure 8C, the raw mean usage of the transcript is 77% in Tnc cells and 436 
45% in Hsd11b1 Endou cells, as indicated by the cyan diamonds. By contrast, the mean usage estimate 437 
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by satuRn, which takes into account that the Hsd11b1 Endou cells expressing the transcript at 0% 438 
usage have low gene-level count, is 83% for Tnc cells and 75% for Hsd11b1 Endou cells, as indicated 439 
by the gold diamonds. 440 
 441 
We therefore argue that, given the above observations, the transcripts identified by satuRn should be 442 
considered more reliable, as they generally originate from genes containing more information for 443 
assessing DTU. 444 

 445 
Figure 8: Three examples displaying DTU transcripts that are uniquely identified by satuRn or limma diffsplice. 446 
Each panel shows transcript usage across cells of the Tnc and Hsd11b1 cell types. The size of each datapoint is 447 
weighted according to the total expression of the corresponding gene in that cell, i.e. the total gene count per 448 
cell. The yellow diamonds indicate the estimated mean usage of a transcript for each cell type, as estimated by 449 
satuRn. The cyan diamonds indicate the mean transcript expression levels per cell type. The header of each 450 
panel indicates the FDR-adjusted p-value and the rank of the DTU finding in the top lists by limma diffsplice and 451 
satuRn analyses. Panel A: Transcript uniquely identified as differentially used by limma diffsplice. The DTU claim 452 
by limma is driven by the difference in mean transcript usage between cell types. Given the low abundance of 453 
the corresponding gene and the highly dispersed single-cell level observations, satuRn doesn’t identify the 454 
transcript as differentially used. Panel B: Transcript uniquely identified as differentially used by satuRn. Even 455 
though the mean difference in transcript usage between cell types is estimated to be 3%, satuRn claims 456 
significance given that the difference is stably supported by many cells with high gene-level expression levels. 457 
Panel C: Transcript uniquely identified as differentially used by limma diffsplice. The DTU claim by limma is driven 458 
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by the raw mean difference in transcript usage between cell types. In contrast, satuRn takes into account that 459 
the Hsd11b1 Endou cells expressing the transcript at 0% usage have low gene-level count. The size of the dots 460 
(which represent individual cells) is weighted according to the total expression of the gene in that cell, i.e. the 461 
total gene count per cell. The yellow diamonds indicate the estimated mean usage of a transcript for each cell 462 
type, as estimated by satuRn. The cyan diamonds indicate the raw mean transcript usage levels per cell type. 463 
 464 

Comparison to DoubleExpSeq 465 

 466 
We additionally analyzed the dataset by Tasic et al. with DoubleExpSeq20. DoubleExpSeq identified a 467 
large number of DTU transcripts in all eight comparisons between cell types, ranging from 335 to 4580 468 
DTU transcripts (Figure S12). This is consistent with our performance benchmarks, which already 469 
suggested that DoubleExpSeq becomes overly liberal in single-cell datasets with a large number of 470 
cells (Figures 4, S7, S8 and S9). We therefore expect many of these transcripts to correspond to false 471 
positives. Furthermore, this is reflected in the pathological distribution of p-values obtained by 472 
DoubleExpSeq, where p-values have a tendency to be small and therefore the analysis too liberal 473 
(Figure S15). Furthermore, as discussed in the benchmark studies, we could not adopt the empirical 474 
null strategy to improve the FDR control of DoubleExpSeq. Again, a large number of p-values equal 1 475 
poses a problem for estimating the empirical null distribution (Figure S16). 476 
 477 
While the results of DoubleExpSeq are likely to be overly liberal, the ranking of the transcripts (based 478 
on the p-values of the DTU analysis) might still be reasonable. In Figure 9, we observe a large overlap 479 
between the top 200 transcripts identified by satuRn in comparison #6 of the case study and the top 480 
200 transcripts of DoubleExpSeq in that comparison. This overlap is considerably smaller with a limma 481 
diffsplice analysis. 482 

 483 
Finally, we note that while DoubleExpSeq could still be used in this case study given the simple factorial 484 
design (using a single factor to assign each cell to a cell type), DoubleExpSeq cannot be used in 485 
multifactorial designs, for instance to compare expression levels across multiple cell types between 486 
multiple samples or treatment groups. 487 

 488 

 489 

 490 
 491 
 492 

Figure 9: Venn diagram displaying the degree of overlap of the 
top 200 transcripts in comparison #6 of the case study in three 
DTU analysis tools. We observe that in the set of the top 200 
transcripts identified by satuRn, 149 transcripts overlap with the 
top 200 list from DoubleExpSeq. In the top 200 list of limma 
diffsplice, 108 transcripts are present that were not in the top 
lists of satuRn or DoubleExpSeq. 
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Discussion 493 
 494 
In this manuscript, we have proposed satuRn, a new software tool for DTU analysis. satuRn adopts a 495 
quasi-binomial GLM framework and obtains direct inference on DTU by modelling the relative usage 496 
of a transcript, in comparison to other transcripts from the same gene, between conditions of interest. 497 
We evaluated the performance of satuRn with respect to 7 other DTU methods on three simulated 498 
bulk RNA-seq datasets, a real bulk RNA-seq dataset and three real scRNA-seq datasets. These 499 
benchmarks underscored the strong performance of satuRn, as well as its ability to control the FDR 500 
close to the nominal level. In addition, we showed that satuRn scales seamlessly to the large data 501 
volumes that are produced in contemporary (sc-)RNA-seq experiments. Furthermore, given the 502 
underlying GLM framework, our method can handle complex experimental designs that are 503 
commonplace in scRNA-seq experiments. Finally, satuRn can extract biologically relevant information 504 
from a large scRNA-seq dataset that would have remained obscured in a canonical DGE analysis. 505 
 506 
Since most sequencing reads map to multiple transcripts, quantification tools such as Salmon or 507 
kallisto only provide an estimate of the expected number of fragments originating from each 508 
transcript. Incorporating quantification uncertainty has recently been shown to improve results in 509 
differential expression analysis of single-cell RNA-seq datasets44. Currently, satuRn and all other DTU 510 
methods discussed in this manuscript, except for BANDITS29, neglect the uncertainty on this 511 
abundance estimate. BANDITS models the abundance uncertainty, however, it had a markedly lower 512 
performance than our method in our benchmark evaluation (Figure S1). 513 
   514 
One challenge common to all DTU methods is that the power to detect differentially used transcripts 515 
depends strongly on the quality of the scRNA-seq dataset. This becomes clear when comparing the 516 
performances for the three different scRNA-seq benchmarks in this manuscript. The performances on 517 
the Darmanis25 dataset (Figure S9) are markedly lower than the performances on the other two 518 
datasets (Figures 4 and S8). A closer inspection of the Darmanis dataset showed that, after filtering, 519 
the transcript-level counts matrix contains a much larger percentage of zero counts than the other 520 
datasets. We also more frequently observed the scenario where the expression level of a gene could 521 
be attributed to a single isoform. This effectively causes the transcript usage to appear binary, with 522 
either 0% or 100% usages of a certain transcript. We argue that while this may reflect the true 523 
underlying biology, for instance through the process of transcriptional bursting45,46, it is more likely to 524 
be a technical artefact as a consequence of more shallow sequencing, given the lower percentage of 525 
binary usage profiles in the Chen and Tasic datasets. The supposedly binary expression of transcripts 526 
due to coverage-dependent bias and the use of more stringent filtering criteria to reduce this bias has 527 
already been comprehensively reported by Najar et al.47. 528 
 529 
We conclude with the following recommendations for DTU analysis from an applied perspective. In 530 
case of small bulk RNA-seq datasets, satuRn, DEXSeq and DoubleExpSeq can be used interchangeably. 531 
In case of datasets with more complex designs that require the DTU model to incorporate additional 532 
covariates, e.g. batch effects, DoubleExpSeq cannot be used. For single-cell datasets, using DEXSeq 533 
will become infeasible in terms of scalability and DoubleExpSeq may give overly liberal results. As such, 534 
we recommend satuRn for performing DTU analyses in large bulk and single-cell RNA-seq datasets. 535 
 536 
 537 
 538 
 539 
 540 
 541 
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Methods 542 
 543 

satuRn model  544 

As input, satuRn requires a matrix of transcript-level expression counts, which may be obtained either 545 
through pseudo-alignment using kallisto1 or salmon2, or by classical alignment-based tools followed 546 
by transcript-level quantification (e.g. STAR48,49 and RSEM50). Let Ygti denote the observed expression 547 
value for a given transcript t = 1, …, Tg of gene g = 1, ..., G in cell or sample i = 1, …, n. The total 548 
expression of gene g in sample i can then be expressed as 549 

𝑌𝑔.𝑖  =   ∑ 𝑌𝑔𝑡𝑖

𝑡 ∈ 𝑇𝑔

    (1), 550 

i.e. by taking the sum of expression values for all Tg transcripts belonging to gene g in sample i. The 551 
usage of transcript t in sample or cell i can then be estimated as 552 

𝑈𝑔𝑡𝑖 =  
𝑌𝑔𝑡𝑖

𝑌𝑔.𝑖
    (2). 553 

Next, we adopt a quasi-binomial (QB) generalized linear modelling (GLM) strategy to model DTU. As 554 
opposed to canonical maximum likelihood models, this quasi-likelihood modelling strategy only 555 
requires the specification of the first two moments of the response distribution, i.e. the mean and the 556 
variance. We define the mean of the QB model as 557 

𝐸[𝑈𝑔𝑡𝑖|𝑿𝒊, 𝑌𝑔.𝑖]  =   𝑔𝑡𝑖  558 

log (
𝑔𝑡𝑖

1 − 𝑔𝑡𝑖

)  =   
𝑔𝑡𝑖

 559 


𝑔𝑡𝑖

 =   𝑿𝑖
𝑇

𝑔𝑡
  560 

 561 
In this notation, 𝜋gti is the expected probability of observing transcript t within the pool of transcripts 562 
(1, …, Tg) belonging to gene g in sample i and, as such, corresponds to its expected usage for that 563 
sample. We model 𝜋gti using a logit link function, where 𝛽t is a p x 1 column vector of regression 564 
parameters modeling the association between the average usage and the covariates for transcript t. 565 
Finally, 𝑿𝑖

𝑇  is a row in the n x p design matrix X that corresponds with the covariate pattern of sample 566 
i, with p the number of parameters of the mean model, i.e. the length of vector 𝛽t. 567 
 568 
The variance of the QB model can be described as 569 

𝑉𝑎𝑟[𝑈𝑔𝑡𝑖|𝑿𝑖 ,  𝑌𝑔.𝑖]  =   
𝑔𝑡𝑖(1 − 𝑔𝑡𝑖)

𝑌𝑔.𝑖
 𝑔𝑡     (4) 570 

with 𝑌𝑔.𝑖𝑔𝑡𝑖(1 − 𝑔𝑡𝑖) the canonical variance of the binomial distribution and 𝜙gt a transcript-specific 571 
overdispersion parameter to describe additional variance in the data with respect to the binomial 572 
variance. We adopt the empirical Bayes procedure from Smyth et al.23, as implemented in the 573 
squeezeVar function of the limma Bioconductor R package, to stabilize the estimates of 𝜙gt by 574 
borrowing information across transcripts, which is adopted in the default edgeR quasi-likelihood 575 
workflow for bulk RNA-seq data22 Note that stabilizing the dispersion estimation is particularly useful 576 
in datasets with a small sample size.  577 

(3) 
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Taken together, the quasi-binomial thus allows us to model the log-odds of drawing a particular 578 
transcript t from the pool of transcripts in the corresponding gene g across samples. The intercept also 579 
has an interpretation of a log-odds and the remaining mean model parameters are log-odds ratios, 580 
which may thus be interpreted in terms of differential transcript usage. We adopt t-tests that are 581 
computed based on the log-odds ratio estimates of the QB model and the posterior variance, as 582 
obtained from the empirical Bayes procedure. P-values are computed assuming a t-distribution under 583 
the null hypothesis with posterior degrees of freedom calculated as the sum of the residual degrees 584 
of freedom and the prior degrees of freedom from the empirical Bayes procedure. 585 

For bulk analyses, the implementation of satuRn as described above provides a high performance and 586 
a good control of the FDR. However, for single-cell datasets we observed that our inference is too 587 
liberal (Figure S10), which could suggest that the theoretical null, the t-distribution, is no longer valid. 588 
Indeed, in large-scale inference settings, failure of the theoretical null distribution is often observed. 589 
Efron52 (Chapter 6) describes four reasons why the theoretical null distribution may fail; failed 590 
mathematical assumptions, correlation across features (transcript expression), correlation across 591 
subjects (samples or cells), and unobserved confounders in observational studies. To avoid these 592 
issues, Efron proposes to exploit the massive parallel data structure of omics datasets to empirically 593 
estimate the null distribution of the test statistics53. To this end, Efron converts the test statistic to z-594 
scores, which should follow a standard normal distribution under the theoretical null, and then 595 
proposes to approximate the empirical null distribution with a normal distribution with unknown 596 
mean (𝜇∗) and standard deviation (𝜎∗), which can be estimated by maximum likelihood on a subset of 597 
the test statistics near zero. 598 

As such, we first convert the two-sided p-values to z-scores according to 599 

𝑧𝑔𝑡  =   −1 (
𝑝𝑔𝑡

2
) ∗ 𝑠𝑖𝑔𝑛(𝑆),    (5) 600 

with Ф the cumulative distribution function for the standard normal distribution, pgt the original two-601 
sided p-value indicating the statistical significance of differential usage of transcript t from gene g 602 
between the conditions of interest, sign(S) the sign of the t-test statistic S and zgt the resulting z-score. 603 
Next, we adopt the maximum likelihood procedure, implemented in the locfdr function of the locfdr 604 
R package from CRAN54, to estimate the mean 𝜇∗ and standard deviation 𝜎∗of the empirical null 605 
distribution. Based on these estimates, we recompute the z-scores and corresponding p-values as 606 
follows 607 

𝑧𝑔𝑡
∗  =   

(𝑧𝑔𝑡 − 𝜇∗)

𝜎∗     (7) 608 

𝑝𝑔𝑡
∗  =   2 ∗ (−𝑎𝑏𝑠(𝑧𝑔𝑡

∗ ))   (8). 609 

Finally, the resulting (empirical) p-values are corrected for multiple testing with the FDR method of 610 
Benjamini and Hochberg30. As opposed to the original p-values that were calculated based on the 611 
theoretical null distribution for the t-statistics, we found that this procedure allows for a better FDR 612 
control in single-cell applications. 613 

DTU tools literature 614 
 615 
Below we provide a brief description of each of the DTU methods from the literature that were 616 
included in the performance benchmarks of this paper. For more details, we refer to the respective 617 
original publications. Note that all methods were run with the current default settings. 618 
 619 
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DEXSeq 620 
 621 
DEXSeq19 (R package version 1.32.0) takes as input a transcript-level expression matrix Yti, with T 622 
transcripts (rows) and n samples or cells (columns). Next, a matrix of complementary counts Cti is 623 
calculated, which defines how many reads map to any of the other transcripts of the same gene as 624 
respective transcript t in cell i. DEXSeq then augments the original expression matrix Yti by 625 
concatenating it with the complementary counts Cti, hence doubling the number of columns of the 626 
original count matrix. A negative binomial generalized linear model (GLM) is fitted to each transcript 627 
in the augmented count matrix as follows 628 
 629 

{𝑌𝑡𝑖 , 𝐶𝑡𝑖} ~ 𝑁𝐵(𝜇𝑡𝑖 , 𝑡) 630 

log(𝜇𝑡𝑖) ~ 
𝑡𝑖

 631 


𝑡𝑖

 ~ 𝑿𝑖
𝑇

𝑡
 . 632 

In the specification of the GLM, 𝑿𝑖
𝑇  corresponds to row i of design matrix X, which defines a covariate 633 

pattern that (i) links the transcript-level count matrix to the complementary counts through sample-634 
level intercepts, and (ii) specifies the design of the experiment. Inference on DTU is obtained by testing 635 
an interaction effect that assesses if the log fold change between transcript t and all other transcripts 636 
in its corresponding gene changes between the conditions of interest (e.g. treatment) with a likelihood 637 
ratio test.  It is important to note that the estimation of sample-level intercepts is required because of 638 
the concatenation of the two count matrices. As a consequence, DEXSeq scales quadratically with the 639 
number of samples or cells in the data. The lack of scalability is thus inherent to the parametrization 640 
of DEXSeq, putting a severe burden on the utility of DEXSeq for DTU analysis in large datasets, as 641 
displayed in Figure 1. 642 
 643 

DoubleExpSeq 644 
 645 
DoubleExpSeq20 (R package version 1.1) assumes a double binomial distribution for each transcript. 646 
The double binomial distribution is a member of the double exponential family of distributions 647 
described by Efron55, which are extensions of one-parameter exponential family distributions that 648 
allow for a more flexible variance structure through introduction of an additional dispersion 649 
parameter. DoubleExpSeq adopts a bespoke empirical Bayes procedure for computing shrinkage 650 
estimates of the dispersion parameter of the double binomial distribution. The double binomial 651 
models the log-odds of drawing a particular transcript t from the pool of transcripts in the 652 
corresponding gene g across samples. The intercept thus has an interpretation of a log-odds and the 653 
remaining mean model parameter(s) are log-odds ratios, which may thus be interpreted in terms of 654 
differential transcript usage. The significance of the mean model parameter(s) are tested using a 655 
likelihood ratio test. Importantly, the current implementation of DoubleExpSeq does not allow for 656 
modeling multifactorial designs and cannot make use of parallel computing. 657 
 658 

DRIMSeq 659 
 660 
DRIMSeq21 (R package version 1.14.0) assumes that the transcript-level expression counts marginally 661 
follow  a Dirichlet multinomial distribution (DM), where the Dirichlet conjugate prior is used to account 662 
for overdispersion with respect to the multinomial distribution. The most important consequence of 663 
treating transcript expression as a realization of a multinomial distribution, is that the correlations 664 
between expression of transcripts derived from the same gene are directly accounted for. In the 665 
DRIMSeq framework, the total count for a gene is considered fixed, and the quantity of interest is the 666 
change in proportion of each transcript within a gene between groups of samples or cells. More 667 
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specifically, DRIMSeq uses a likelihood ratio test to determine if the transcript ratios of a gene, which 668 
are modelled by the multinomial, are different between conditions of interest.   669 
 670 

Limma diffsplice 671 
 672 
Limma diffsplice (limma, R package version 3.42.2) is a built-in functionality described in the current 673 
user’s guide of the limma Bioconductor R package23. Limma was originally devised for analyzing 674 
microarray data but can also be used for RNA-Seq data with the limma-voom method56. Limma-voom 675 
fits a linear model to the log-transformed (normalized) transcript-level count matrix, while adjusting 676 
for heteroskedasticity via weighted regression, where the observation weights are computed from the 677 
observed variance-mean relationship. Limma diffsplice then uses a series of t-tests to assess DTU at 678 
the transcript level by comparing the log-fold change in expression of transcript t with the average 679 
log-fold change in the expression of all transcripts belonging to the same gene as transcript t. 680 
 681 

EdgeR diffsplice 682 
 683 
EdgeR diffsplice (edgeR, R package version 3.28.1) is a built-in functionality described in the vignettes 684 
of the edgeR Bioconductor R package, which was last revisited by Chen et al.22. The edgeR diffsplice 685 
function fits a negative binomial GLM for each transcript and tests for differential transcript usage by 686 
comparing the obtained log-fold changes for each respective transcript within a gene with the log-fold 687 
change of the entire gene. If the log-fold change for a certain transcript is significantly different from 688 
those of the other transcripts in the gene, it is flagged as differentially used. Note that the negative 689 
binomial GLMs can be fit using a canonical likelihood-based approach or using a quasi-likelihood. We 690 
adopted the likelihood-based approach as it consistently displayed higher performances (data not 691 
shown). In this setting, inference is obtained using a likelihood ratio test. 692 
 693 

NBSplice 694 
 695 
NBSplice24 (R package version 1.4.0) fits a negative binomial GLM for each transcript in the dataset. In 696 
contrast to e.g. DEXSeq, the mean transcript-level expression (i.e. the mean parameter of the negative 697 
binomial model) is taken as the product of the mean gene-level expression value and the observed 698 
percentual usage of the transcripts within its corresponding gene. The GLM framework of NBSplice is 699 
structured such that DTU between groups of interest can be tested using a likelihood ratio test, where 700 
the full model contains an isoform-condition interaction term that is omitted in the null model. Note 701 
that in our benchmarks the NB GLM estimation procedure of NBSplice fails to converge when there is 702 
a large fraction of zero counts in the data. As a consequence, NBSplice was omitted from the 703 
performance benchmarks on single-cell data and from the scalability benchmarks, as the latter also 704 
make use of single-cell data. 705 
 706 

BANDITS 707 
 708 
BANDITS29 (R package version 1.3.2) adopts a Bayesian hierarchical model with a Dirichlet-multinomial 709 
to explicitly model the sample-to-sample variability between biological replicates. In addition to the 710 
transcript-level count matrix, equivalence class counts are used as input to the BANDITS algorithm. As 711 
described by Bray et al.1, an equivalence class for a (transcriptomics) read is a multi-set of transcripts 712 
associated with that read. As such, an equivalence class represents the transcripts from which a read 713 
could have originated. BANDITS leverages the information conveyed by the equivalence class counts 714 
to model the uncertainty arising from reads mapping to multiple transcripts. In brief, the allocation of 715 
reads to transcripts is treated as a latent variable that is sampled jointly with the parameters of the 716 
Dirichlet-multinomial; sampling of these parameters is done with a Markov chain Monte Carlo 717 



20 
 

algorithm. As such, BANDITS allows for modeling the mean relative usage of each transcript within its 718 
corresponding gene across samples/cells, while accounting for quantification uncertainty. In addition, 719 
BANDITS also accounts for differences in transcript length. Finally, BANDITS tests for DTU (at the 720 
transcript level) by performing univariate Wald tests. 721 
 722 

Filtering 723 
 724 
We adopted two different strategies for filtering transcripts in each of the RNA-seq datasets in the 725 
performance benchmarks.  726 
 727 
The first filtering strategy uses the filterByExpr function implemented in edgeR57. This filtering strategy 728 
only retains transcripts that have at least an expression level of min.count counts-per-million (CPM, 729 
calculated as the number of read counts divided by the total number of reads in the dataset and 730 
multiplied by one million) in at least n samples or cells. In addition, the sum of the CPM of the 731 
transcript across all cells or samples must be at least min.total.count. For the bulk RNA-seq datasets, 732 
we use the default settings (min.count = 10, n = min(10, 0.7*sample size of the smallest group in the 733 
comparison) and min.total.count = 10). For the scRNA-seq datasets, the settings are adjusted to; 734 
min.count = 1 (as requiring a transcript to be expressed in all single-cells is a stringent criterium), n = 735 
0.5*sample size of the smallest group in the comparison and min.total.count = 0. In addition, if only 736 
one transcript of a gene passes this filtering criterion, it is omitted from the analysis, as DTU analysis 737 
is meaningless when only one transcript is retained. As such, we specifically set the parameters to 738 
generate a very lenient filtering criterium. 739 
 740 
The second filtering strategy uses the dmFilter function implemented in DRIMSeq21. This filter is more 741 
stringent and specifically designed for DTU analysis. The filtering process can be thought of as 742 
proceeding in three steps. Let ns be the number of samples or cells in the smallest group. The first step 743 
requires the transcripts to have a count of at least 10 in at least ns samples. The second filtering step 744 
requires the transcript to make up at least 10% of the total count of its corresponding gene in at least  745 
ns samples. The third filtering step removes all transcripts for which the corresponding gene has a 746 
count below 10 in any of the samples or cells in the dataset. Again, if only one transcript of a gene 747 
passes this filtering criterion, it is omitted from the analysis. 748 

 749 

Bulk simulation study 750 
 751 
To evaluate the performance of the different DTU analysis methods, we first adopt three simulated 752 
bulk RNA-seq datasets from previous publications: the simulated dataset from Love et al.18 (dataset 753 
1) and both the Drosophila melanogaster (dataset 2) and Homo sapiens (dataset 3) simulation studies 754 
from Van den Berge et al.31. All three datasets were generated based on parameter values obtained 755 
from real RNA-seq samples, to mimic real RNA-seq data as close as possible.  756 
 757 
Notably, there is a subtle difference in how DTU is introduced between the two simulation 758 
frameworks. For dataset 1, the origin of DTU is twofold: On the one hand, DTU was specifically 759 
introduced by swapping the transcript-per-million (TPM) abundances between two expressed 760 
isoforms. On the other hand, DTU was also obtained as a consequence of introducing DTE, where a 761 
single expressed isoform was induced to be differentially expressed at a certain log fold change, which 762 
leads to DTU if this transcript belongs to a gene expressing multiple isoforms. For datasets 2 and 3, 763 
there is only one source of DTU. The number of differentially used transcripts within a gene was 764 
sampled ranging from a minimum of 2 up to a random number drawn from a binomial distribution 765 
with size equal to the number of transcripts and success probability 1/3. DTU was introduced by 766 
swapping the TPM abundances between the differentially used transcripts. As such, the latter 767 
framework allows for differential usage of multiple transcripts of the same gene, which is not possible 768 
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with the framework used for generating dataset 1. Additionally, dataset 1 uses salmon2 (version 1.1.0) 769 
for estimating transcript-level abundances, whereas datasets 2 and 3 were quantified with kallisto1 770 
(version 0.46.2). 771 
 772 

Real bulk study 773 
 774 
We evaluate the performance of the different DTU methods on real bulk RNA-seq data, by 775 
subsampling a homogeneous set of samples from the large bulk RNA-seq dataset available from the 776 
Genotype-Tissue Expression (GTEx) consortium34 release version 8. Nine datasets were generated 777 
non-parametrically. More specifically, we first selected samples from adrenal gland tissue that were 778 
extracted with the RNA extraction method “RNA Extraction from Paxgene-derived Lysate Plate Based”. 779 
From the remaining samples we subsampled 9 datasets, comprising 3 repeats for each of 3 sample 780 
sizes; 5 versus 5, 20 versus 20 and 50 versus 50 samples. Next, DTU is artificially introduced with the 781 
swapping strategy that is described in the bulk simulation study paragraph of the Methods section of 782 
this paper. The GTEx data was quantified with RSEM50 version 1.3.0. 783 
 784 

Real single-cell study 785 
 786 
We evaluate the performance of the different DTU methods on real scRNA-seq datasets. These scRNA-787 
seq datasets were generated non-parametrically by subsampling a homogeneous set of cells from 788 
three real scRNA-seq datasets25,28,35, after which DTU is artificially introduced by the swapping strategy 789 
that is described in the bulk simulation study paragraph of the Methods section of this paper.  790 
 791 
For the dataset of Chen et al.28, which was used to construct Figures 4 and S7, we selected a 792 
homogeneous population of cells by considering only the EpiStem cells of female mice, resulting in a 793 
dataset of 120 cells. From this homogeneous population of cells, we then subsampled 6 datasets, 794 
comprising 3 repeats for each of 2 sample sizes: 20 versus 20 and 50 versus 50 cells. Next, DTU was 795 
artificially introduced with the swapping strategy that is described in the bulk simulation study 796 
paragraph of the Methods section of this paper. Finally, we adopted either edgeR or DRIMSeq for 797 
filtering. 798 
 799 
The other two scRNA-seq datasets were generated analogously. For the dataset of Tasic et al.35, which 800 
was used to construct Figure S8 in the main manuscript, we selected a homogeneous population of 801 
cells by considering only the Lamp5 cells in the anterior lateral motor cortex of mice without any eye 802 
conditions, resulting in a dataset of 897 cells. After introducing DTU, we randomly subsampled 20, 75 803 
or 200 cells from each group. For the dataset of Darmanis et al.25, which was used to construct Figure 804 
S9, we selected the immune cells that clustered together in tSNE cluster 8 of the original publication, 805 
resulting in a dataset of 248 cells. After introducing DTU, we randomly subsampled 20, 50 or 100 cells 806 
from each group. 807 
 808 

Case study DGE analysis 809 
 810 
We perform a DGE analysis on a subset of the Tasic single-cell dataset35, i.e. between different the cell 811 
types originating from the ALM and VISp regions of the glutamatergic L5 IT subclass. We use the quasi-812 
likelihood method of edgeR32 to model the gene expression profiles and additionally adopt the edgeR 813 
glmTreat function to test differential expression against a log2-fold change threshold (log2-fold 814 
change = 1). Statistical significance was evaluated at the 5% FDR level. 815 
 816 

Performance assessment 817 
 818 
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We assess the performance of different DTU methods on a bulk simulation dataset with scatterplots 819 
of the true positive rate (TPR) versus the false discovery rate (FDR), according to the following 820 
definitions: 821 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
      (9) 822 

 823 

𝐹𝐷𝑃 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑃
      (10) 824 

 825 
𝐹𝐷𝑅 = 𝐸[𝐹𝐷𝑃]      (11) 826 

 827 
where FN, FP and TP denote the numbers of false negatives, false positives and true positives, 828 
respectively. The FDR-TPR curves are constructed using the Bioconductor R package ICOBRA58. 829 
 830 

Scalability benchmark 831 
 832 
The scalability benchmark was run on subsets of the Chen scRNA-seq dataset28, which contains 617 833 
cells in total. For the scalability benchmark with respect to the number of cells in the dataset, we 834 
randomly subsample a certain number of cells (8, 16, 32, 64, 128 or 256 cells per group) from the 835 
dataset (without introducing DTU or selecting specific homogeneous cell populations). Next, we filter 836 
this subsample using the edgeR-based filtering criterion. This was done to remove very lowly abundant 837 
transcripts, which may otherwise cause problems in the parameter estimation procedure. From the 838 
remaining transcripts, we randomly subsampled to a total of 30.000 transcripts before running the 839 
DTU analysis. To allow for a scalability benchmark of BANDITS, which scales poorly to the number of 840 
transcripts (Figure 5B), we also generated a dataset with only 1.000 transcripts (Figure S1).  841 
 842 
For the scalability benchmark with respect to the number of transcripts, we randomly sampled two 843 
groups of 16 cells from the dataset. After applying the edgeR-based filter, we sampled 8 distinct 844 
numbers of transcripts: 1.000, 2.000, 5.000, 10.000, 15.000, 20.000, 25.000, 30.000 and 35.000 prior 845 
to the DTU analysis. 846 
 847 
All scalability benchmarks were run on a single core of a virtual machine with an Intel(R) Xeon(R) CPU 848 
E5-2420 v2 (2.20GHz, Speed: 2200 MHz) processor and 30GB RAM. 849 
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Data and code availability 864 

 865 
satuRn is implemented in an R package that is available at https://github.com/statOmics/satuRn and 866 
will be submitted to the Bioconductor project. All the scripts that are required to reproduce the 867 
analyses and figures that are used for this publication can be retrieved from 868 
https://github.com/statOmics/satuRnPaper. On this GitHub page, a Zenodo link will provided from 869 
which the raw data and intermediate results of our analyses can be downloaded. 870 
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Supplementary Figures 1004 
 1005 

 1006 
Figure S1: Performance and scalability evaluation on a subset of the Love et al. dataset. To allow for a 1007 
performance and scalability evaluation of BANDITS, which does not scale to datasets with a large number of 1008 
transcripts, we here perform a DTU analysis for the 6 versus 6 samples dataset of Love et al. with only 1000 1009 
transcripts. Left panel: performance evaluation. The results are in line with those of Figure 1A. The performance 1010 
of BANDITS is indicated in pink. Right panel: Scalability evaluation. BANDITS scales linearly with respect to the 1011 
number of cells (or samples) in the dataset. The slope of the linear trend, however, is considerably larger than 1012 
those of the other DTU methods that scale linearly. Note that the profiles of limma diffsplice, edgeR diffsplice 1013 
and DoubleExpSeq overlap in this figure. 1014 
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Figure S2: Performance evaluation of satuRn on different subsamples of the simulated bulk RNA-Seq dataset 1039 
by Love et al. FDR-TPR curves visualize the performance of each method by displaying the sensitivity of the 1040 
method (TPR) with respect to the false discovery rate (FDR). The three circles on each curve represent working 1041 
points when the FDR level is set at nominal levels of 1%, 5% and 10%, respectively. The circles are filled if the 1042 
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empirical FDR is equal or below the imposed FDR threshold. We subsampled two-group comparisons according 1043 
to three different samples sizes; a 3 versus 3, 6 versus 6 and 10 versus 10 comparison, as denoted in the panel 1044 
titles. The benchmark was performed both on the raw counts (rows 1 and 2) or on scaled transcripts-per-million 1045 
(TPM) (rows 3 and 4) as imported with the Bioconductor R package tximport59.  We additionally adopted two 1046 
different filtering strategies: an edgeR-based filtering (rows 1 and 3) and a DRIMSeq-based filtering (rows 2 and 1047 
4). Overall, the performance of satuRn is on par with those of the best tools in the literature, DEXSeq and 1048 
DoubleExpSeq. In addition, satuRn achieves a better control of the FDR on all datasets. For extremely small 1049 
sample size, i.e. the 3 versus 3 comparison, the performance is slightly below that of DEXSeq, and inference does 1050 
become slightly too conservative. Note that, as expected, the performances increase with increasing sample 1051 
size, and a higher performance is achieved with the more stringent DRIMSeq filtering criterion (see Methods), 1052 
which goes at the cost of retaining fewer transcripts for DTU analysis. Finally, we note that the performances 1053 
and FDR control are consistently higher for the scaled TPM data as compared to the raw counts. Note that this 1054 
was only observed for this particular dataset. 1055 
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 1089 

Figure S3: Performance evaluation on different subsamples of the simulated bulk RNA-Seq dataset by Love et 1090 
al. with a reduced number of transcripts to allow for a comparison with BANDITS. FDR-TPR curves visualize the 1091 
performance of each method by displaying the sensitivity of the method (TPR) with respect to the false discovery 1092 
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rate (FDR). The three circles on each curve represent working points when the FDR level is set at nominal levels 1093 
of 1%, 5% and 10%, respectively. The circles are filled if the empirical FDR is equal or below the imposed FDR 1094 
threshold. We subsampled two-group comparisons according to three different samples sizes; a 3 versus 3, 6 1095 
versus 6 and 10 versus 10 comparison, as denoted on top of the panels. The benchmark was performed both on 1096 
the raw counts (rows 1 and 2) or on scaled transcripts-per-million (TPM) (rows 3 and 4) as imported with the 1097 
Bioconductor R package tximport59.  We additionally adopted two different filtering strategies: an edgeR-based 1098 
filtering (rows 1 and 3) and a DRIMSeq-based filtering (rows 2 and 4). Note that, in contrast to Figure S2, we 1099 
additionally randomly subsampled 1000 genes (~3000-5000 transcripts) after filtering, in order to reduce the 1100 
number of transcripts in the data and thereby allowing for a DTU analysis with BANDITS. In concordance with 1101 
Figure S2, the performance of satuRn is on par with the best tools of the literature with a better control of the 1102 
FDR in general. While the performance of BANDITS is good for the settings for which it was originally developed, 1103 
(i.e., small datasets with a stringent filtering criterium), its performance is reduced in larger, more leniently 1104 
filtered datasets and inference is also overly liberal in these settings. In addition, while all other methods perform 1105 
much better on the scaledTPM data (rows 3 and 4) than on the raw count data (rows 1 and 2), BANDITS has a 1106 
similar performance on both input data types. This can be explained by the fact that BANDITS inherently corrects 1107 
for differences in transcript length, even when raw counts are used as an input.   1108 
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 1137 
Figure S4: Performance evaluation of satuRn on the “Dmelanogaster” simulated bulk RNA-Seq dataset by Van 1138 
den Berge et al. FDR-TPR curves visualize the performance of each method by displaying the sensitivity of the 1139 
method (TPR) with respect to the false discovery rate (FDR). The three circles on each curve represent working 1140 
points when the FDR level is set at nominal levels of 1%, 5% and 10%, respectively. The circles are filled if the 1141 
empirical FDR is equal or below the imposed FDR threshold. The benchmark was performed both on the raw 1142 
counts (row 1) and on scaled TPM (row 2) as imported with the Bioconductor R package tximport59.  We 1143 
additionally adopted two different filtering strategies; an edgeR-based filtering (column 1) and a DRIMSeq-based 1144 
filtering (column 2). Overall, the performance of satuRn is on par with those of the best tools in the literature, 1145 
DEXSeq and DoubleExpSeq. In contrast to the performance evaluation on the dataset by Love et al. (Figures 1A 1146 
and S2), there is a limited difference in performances based on the data input type (i.e., counts versus scaled 1147 
TPM), and DRIMSeq also performs well on these datasets. 1148 
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 1156 
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 1157 

 1158 
Figure S5: Performance evaluation of satuRn on the “Hsapiens” simulated bulk RNA-Seq dataset by Van den 1159 
Berge et al. FDR-TPR curves visualize the performance of each method by displaying the sensitivity of the 1160 
method (TPR) with respect to the false discovery rate (FDR). The three circles on each curve represent working 1161 
points when the FDR level is set at nominal levels of 1%, 5% and 10%, respectively. The circles are filled if the 1162 
empirical FDR is equal or below the imposed FDR threshold. The benchmark was performed both on the raw 1163 
counts (row 1) and on scaled TPM (row 2) as imported with the Bioconductor R package tximport59.  We 1164 
additionally adopted two different filtering strategies; an edgeR-based filtering (column 1) and a DRIMSeq-based 1165 
filtering (column 2). Overall, the performance of satuRn is on par with those of the best tools in the literature, 1166 
DEXSeq and DoubleExpSeq. In contrast to the performance evaluation on the dataset by Love et al. (Figures 1A 1167 
and S2), ), there is a limited difference in performances based on the data input type (i.e., counts versus scaled 1168 
TPM), and DRIMSeq also performs well on these datasets. 1169 
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Figure S6: Performance evaluation of satuRn on the GTEx bulk RNA-Seq dataset. FDR-TPR curves visualize the 1176 
performance of each method by displaying the sensitivity (TPR) with respect to the false discovery rate (FDR). 1177 
The three circles on each curve represent working points when the FDR level is set at nominal levels of 1%, 5% 1178 
and 10%, respectively. The circles are filled if the empirical FDR is equal or below the imposed FDR threshold. 1179 
The benchmark was performed both on the raw counts (rows 1 and 2) or on scaled transcripts-per-million (TPM) 1180 
(rows 3 and 4) as imported with the Bioconductor R package tximport59.  We additionally adopted two different 1181 
filtering strategies; an edgeR-based filtering (rows 1 and 3) and a DRIMSeq-based filtering (rows 2 and 4).  The 1182 
performance of satuRn is on par with the best tools from the literature, DEXSeq and DoubleExpSeq. In addition, 1183 
satuRn consistently provides a stringent control of the FDR, while DoubleExpSeq becomes more liberal with 1184 
increasing sample sizes. Note that DEXSeq, DRIMSeq and NBSplice were omitted from the largest comparison, 1185 
as these methods do not scale to large datasets (Figure1). 1186 
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Figure S7: Performance evaluation of satuRn on the real scRNA-Seq dataset by Chen et al. FDR-TPR curves 1233 
visualize the performance of each method by displaying the sensitivity of the method (TPR) with respect to the 1234 
false discovery rate (FDR). The three circles on each curve represent working points when the FDR level is set at 1235 
nominal levels of 1%, 5% and 10%, respectively. The circles are filled if the empirical FDR is equal or below the 1236 
imposed FDR threshold. The benchmark was performed both on the raw counts (rows 1 and 2) or on scaled 1237 
transcripts-per-million (TPM) (rows 3 and 4) as imported with the Bioconductor R package tximport59.  We 1238 
additionally adopted two different filtering strategies; an edgeR-based filtering (rows 1 and 3) and a DRIMSeq-1239 
based filtering (rows 2 and 4). The performance of satuRn is at least on par with the best tools from the 1240 
literature. Note that the performance of DEXSeq is clearly lower. In addition, our method consistently controls 1241 
the FDR close to its imposed nominal FDR threshold, while DoubleExpSeq becomes more liberal with increasing 1242 
sample sizes. DEXSeq and DRIMSeq were omitted from the largest comparison (two groups with 50 cells each), 1243 
as these methods do not scale to large datasets (Figure 1). NBSplice was omitted from all comparisons, as it does 1244 
not converge on datasets with many zeros, such as scRNA-Seq datasets. 1245 
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Figure S8: Performance evaluation of satuRn on the real scRNA-Seq dataset by Tasic et al. FDR-TPR curves 1270 
visualize the performance of each method by displaying the sensitivity of the method (TPR) with respect to the 1271 
false discovery rate (FDR). The three circles on each curve represent working points when the FDR level is set at 1272 
nominal levels of 1%, 5% and 10%, respectively. The circles are filled if the empirical FDR is equal or below the 1273 
imposed FDR threshold. We generated three two-group comparisons of 20, 75 and 200 cells each (left, middle 1274 
and right panel, respectively). The benchmark was performed both on the raw counts (rows 1 and 2) or on scaled 1275 
transcripts-per-million (TPM) (rows 3 and 4) as imported with the Bioconductor R package tximport59. We 1276 
additionally adopted two different filtering strategies; an edgeR-based filtering (rows 1 and 3) and a DRIMSeq-1277 
based filtering (rows 2 and 4). Overall, satuRn slightly outperforms DoubleExpSeq, the best tools from the 1278 
literature. Note that the performance of DEXSeq is clearly lower. In addition, our method consistently controls 1279 
the FDR close to its imposed nominal FDR threshold, while DoubleExpSeq becomes more liberal with increasing 1280 
sample sizes. DEXSeq and DRIMSeq were omitted from the largest comparison (two groups with 75 cells and 1281 
200 cells each, respectively), as these methods do not scale to large datasets (Figure 1). NBSplice was omitted 1282 
from all comparisons, as it does not converge on datasets with many zeros, such as scRNA-Seq datasets. 1283 
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Figure S9: Performance evaluation of satuRn on the real scRNA-Seq dataset by Darmanis et al. FDR-TPR curves 1326 
visualize the performance of each method by displaying the sensitivity of the method (TPR) with respect to the 1327 
false discovery rate (FDR). The three circles on each curve represent working points when the FDR level is set at 1328 
nominal levels of 1%, 5% and 10%, respectively. The circles are filled if the empirical FDR is equal or below the 1329 
imposed FDR threshold. We generated three two-group comparisons of 20, 50 and 100 cells each (left, middle 1330 
and right panel, respectively). The benchmark was performed both on the raw counts (rows 1 and 2) or on scaled 1331 
transcripts-per-million (TPM) (rows 3 and 4) as imported with the Bioconductor R package tximport59. We 1332 
additionally adopted two different filtering strategies; an edgeR-based filtering (rows 1 and 3) and a DRIMSeq-1333 
based filtering (rows 2 and 4). Overall, the performance of satuRn is similar to DoubleExpSeq, the best tools 1334 
from the literature. In addition, our method consistently controls the FDR close to its imposed nominal FDR 1335 
threshold, while DoubleExpSeq becomes more liberal with increasing sample sizes. On the dataset with the 1336 
smallest sample size, the FDR control of satuRn does become too strict. 1337 
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 1375 
Figure S10: The effect of using an empirical null distribution on the false discovery control of satuRn. 1376 
Panel A: Empirical distribution of the satuRn test statistics in one of the bulk transcriptomics 1377 
benchmark datasets adapted from Love et al. The test statistics are z-scores, calculated from satuRn 1378 
p-values as described in formula 5 (see Methods). As this benchmark dataset is constructed to have 1379 
15% DTU transcripts and thus 85% non-DTU or null transcripts, most of these z-scores are expected to 1380 
follow a standard normal distribution (mean = 0, standard deviation = 1). This is reflected in the 1381 
maximum likelihood estimates for the mean and variance of the empirical null distribution (mean = -1382 
0.002, standard deviation = 1.029). Panel B: Corresponding FDP-TPR curve for the bulk transcriptomics 1383 
benchmark dataset. As the theoretical null distribution and the empirical null distribution are virtually 1384 
identical, we observe a negligible difference between both strategies, both in terms of performance 1385 
and FDR control. Panel C: Empirical distribution of the satuRn test statistics in one of the single-cell 1386 
benchmark datasets adapted from Chen et al. Again, most of these z-scores are expected to follow a 1387 
standard normal distribution as this benchmark dataset is also constructed to have 15% DTU 1388 
transcripts and thus 85% non-DTU or null transcripts. However, the empirical distribution is 1389 
considerably wider than expected (standard deviation = 1.236). We additionally observe a small shift 1390 
of the distribution (mean = 0.072). Panel D: Corresponding FDP-TPR curve for the single-cell 1391 
benchmark dataset. While the inference for satuRn is overly liberal when working under the 1392 
theoretical null, FDR control is restored by adopting the wider empirical null distribution. Note that 1393 
the performance will only be affected when the empirical null distribution is strongly shifted with 1394 
respect to the theoretical null (i.e., a large mean in absolute value), which was not the case in this 1395 
example nor in any other dataset from our analyses. 1396 
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Figure S11: Adopting an empirical null distribution to improve FDR control is infeasible for 1401 
DoubleExpSeq. Panel A: Distribution of the p-values from a DoubleExpSeq analysis in one of the 1402 
single-cell benchmark datasets adapted from Chen et al. We immediately observe the large spike of 1403 
p-values equal to 1, which distorts the p-value distribution. In addition, the p-values in the mid-range 1404 
(e.g., from 0.1 to 0.9), which are expected to be uniformly distributed, are skewed towards smaller 1405 
values, which underlies the overly liberal results of DoubleExpSeq in our single-cell benchmarks. Panel 1406 
B: The corresponding empirical distribution of the DoubleExpSeq test statistics. The test statistics are 1407 
z-scores, calculated from the original DoubleExpSeq p-values as described in formula 5 (see Methods). 1408 
As all our benchmark datasets are constructed to have 15% DTU transcripts and thus 85% non-DTU or 1409 
null transcripts, most of these z-scores are expected to follow a standard normal distribution (mean = 1410 
0, standard deviation =1). However, given the pathological distribution of the p-values it is not feasible 1411 
to properly estimate the empirical null distribution, as also clearly shown by the widely different 1412 
parameter estimates obtained using the two estimation frameworks implemented in the locfdr R 1413 
package; compare the estimates between MLE (maximum likelihood estimation) and CME (central 1414 
matching estimation). 1415 
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Comparison 
Cell type 1 

(ALM) 
Cell type 2 

(VISp) 
DoubleExpSeq 

FDR 
Limma  

FDR 
Limma 

Empirical FDR 

1 Cpa6 Gpr88 Batf3 2142 3602 169 

2 Cbln4 Fezf2 Col27a1 644 468 297 

3 Cpa6 Gpr88 Col6a1 Fezf2 335 1029 77 

4 Gkn1 Pcdh19 Col6a1 Fezf2 1878 2861 58 

5 Lypd1 Gpr88 Hsd11b1 Endou 829 1411 249 

6 Tnc Hsd11b1 Endou 4580 4819 341 

7 
Tmem163 

Dmrtb1 
Hsd11b1 Endou 3388 5603 176 

8 
Tmem163 
Arhgap25 

Whrn Tox2 455 1387 166 

 1439 
Figure S12: Number of differentially used transcripts as identified by DoubleExpSeq and limma 1440 
diffsplice. The first three columns indicate the comparisons between ALM cell types (column 2) and 1441 
VISp cell types (column 3), respectively. Column 4 indicates the number of differentially used 1442 
transcripts as identified by DoubleExpSeq. Column 5 indicates the number of differentially used 1443 
transcripts as identified by a limma diffsplice analysis with default settings. Column 6 displays the 1444 
number of differentially used transcripts found by limma diffsplice after correcting for deviations 1445 
between the theoretical and empirical null distributions. 1446 
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 1469 
Figure S13: Histograms of the p-values from limma diffsplice. From these histograms, the huge 1470 
number of DTU transcripts identified by limma diffsplice become apparent. Note that the general 1471 
tendency of limma diffsplice for smaller p-values is better visible when converting the p-values into z-1472 
scores (see Figure S13) 1473 
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Figure S14: Empirical distribution of the limma diffsplice test statistics. The test statistics are z-scores, 1474 
calculated from limma diffsplice p-values as described in formula 5. Theoretically, these z-scores are 1475 
expected to follow a standard normal distribution (mean = 0, standard deviation =1). Here, however, 1476 
the empirical distributions are considerably wider (standard deviation > 1), as indicated underneath 1477 
the plots. This indicates that the results returned by limma diffsplice in this case study are overly 1478 
liberal. 1479 
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 1480 
Figure S15: Histograms of the p-values from DoubleExpSeq. From these histograms, the huge number 1481 
of DTU transcripts identified by limma diffsplice become apparent. In addition, we observe a gradual 1482 
decrease of p-values over the interval [0.05 < p < 0.95], with a very large spike of p-values that are 1483 
exactly 1 in all comparisons or contrasts of interest. 1484 
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 1485 
Figure S16: Empirical distribution of the test statistics in comparison #6 of the case study with 1486 
DoubleExpSeq. The test statistics are z-scores, calculated from DoubleExpSeq p-values as described 1487 
in formula 5 (see Methods). Theoretically, the bulk of these z-scores are expected to follow a standard 1488 
normal distribution (mean = 0, standard deviation =1), i.e., assuming that most transcripts are not 1489 
differentially used. However, the large spike of p-values equal to 1 (See Figure S14) results spike of z-1490 
scores equal to zero, which poses a problem when estimating the empirical null distribution (blue 1491 
dashed curve). 1492 
 1493 
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