6 research outputs found

    Optimization of BiVO4 photoelectrodes made by electrodeposition for sun-driven water oxidation

    Get PDF
    In this work, the synthesis of cheap BiVO4 photoanodes for the photoelectrochemical water splitting reaction was optimized via the scalable thin film electrodeposition method. Factors affecting the photoelectrochemical activity, such as the electrodeposition time, the ratio of the Bi-KI to benzoquinone-EtOH in the deposition bath, and the calcination temperature, have been investigated by using the Central Composite Design of Experiments. Pristine monoclinic scheelite BiVO4 photoanodes having a photocurrent density of 0.45 ± 0.05mA/cm2 at 1.23 V vs RHE have been obtained. It was shown that a high photocurrent density is generally dictated by the following physico-chemical properties: a higher crystallite size, optimal thickness and a porous morphology, which give rise to a low charge transfer resistance, low onset potential and a high donor density. Moreover, to the best of our knowledge, this is the first report on the depth profile XPS analysis performed in BiVO4 photoanodes made by electrodeposition technique, from which it was concluded that the surface V species exist as V4+ while the bulk V species are V5+. The V4+ induces a higher amount of surface oxygen vacancies, which was found to be beneficial for the photoactivity

    Photocatalyseurs actifs dans le visible pour l'oxydation de l'eau : vers les bioraffineries solaires

    No full text
    Photoelectrochemical (PEC) water splitting is a direct way of producing a solar fuel like hydrogen from water. The bottleneck of this process is in the photoanode, which is responsible for the water oxidation side of the reaction1,2. In this work, the use of BiVO4 as a photoanode was extensively studied in order to improve its photoactivity. The optimization of BiVO4 photoanode synthesis via thin film electrodeposition on FTO was performed. The factors affecting the photoelectrochemical activity such as the electrodeposition time, ratio of the Bi-KI to benzoquinone-EtOH in the deposition bath, and the calcination temperature, have been investigated by using the Central Composite Design of Experiments.Surface states on the BiVO4 surface give rise to defect levels, which can mediate electron-hole recombination via the Shockley-Read-Hall mechanism5. In order to protect the BiVO4 surface and minimize the inefficiencies due to electron-hole recombination and passivate the surface states, ultrathin overlayers of Al2O3 and TiO2 were deposited to the BiVO4 thin film electrodes in an ALD-like manner. A photocurrent density of 0.54 mA/cm2 at 1.23 V vs RHE was obtained for the 2 cycles Al2O3-modified BiVO4, which was a 54% improvement from the bare BiVO4 that demonstrated a photocurrent density of 0.35 mA/cm2 at 1.23 V vs RHE. A 15% increase in stability of the Al2O3- modified BiVO4 electrode was also observed over 7.5 hours of continuous irradiation. Moreover, through surface capacitance measurements, it was shown that the Al2O3 overlayer was indeed passivating the surface states of the BiVO4 electrodes. The nature of the BiVO4 surface was studied by investigating the reactivity of powder BiVO4 with a chemical titrant. The existence of surface hydroxyl groups on BiVO4 was confirmed and quantified (max 1.5 OH/nm2) via chemical titration. The reaction of the BiVO4 powder with one pulse of AlMe3 and 1 pulse of H2O showed that there were 1.2 molecules of CH4 evolved per Bi-OH. In this work, we were able to highlight which factors are important in the synthesis of BiVO4, and how they affect the resulting photoactivity. We have also achieved the passivation of the BiVO4 surface states using Al2O3, which is not well-explored in literature. Moreover, we were able to probe and discuss the nature of the BiVO4 surface. This is a very fundamental knowledge and the first report of such, to the best of our knowledge. A good understanding of this important semiconductor surface and its interactions will aid in the design of a more efficient BiVO4 photoanodeLa séparation photoélectrochimique de l'eau (PEC) est un moyen direct de produire un combustible solaire tel que l'hydrogène à partir de l'eau. Le goulot d'étranglement de ce processus se situe dans la photoanode, qui est responsable du côté oxydation de la réaction1,2. Dans ce travail, l'utilisation de BiVO4 en tant que photoanode a été largement étudiée afin d'améliorer sa photoactivité. L’optimisation de la synthèse de photoanodes BiVO4 par électrodéposition en couche mince sur du FTO a été réalisée. Les facteurs influant sur l'activité photoélectrochimique, tels que le temps d'électrodéposition, le rapport Bi-KI/benzoquinone-EtOH dans le bain de dépôt et la température de calcination, ont été étudiés à l'aide de la conception composite centrale d'expériences. Les états de surface sur la surface de BiVO4 donnent lieu à des niveaux de défaut pouvant induire une recombinaison électron-trou via le mécanisme de Shockley-Read-Hall5. Afin de minimiser les inefficacités dues à la recombinaison électron-trou et passiver les états de surface, des couches de recouvrement ultra-fines d'Al2O3 et de TiO2 ont été déposées sur les électrodes en film mince BiVO4 d'une manière analogue à l'ALD. Cela a également été réalisé afin de protéger la surface de BiVO4 de la photocorrosion et d’augmenter sa stabilité. Une densité de photocourant de 0,54 mA/cm2 à 1,23 V vs RHE a été obtenue pour les 2 cycles de BiVO4 modifié par Al2O3, comme le montre la Figure 2, soit une amélioration de 54% par rapport à la BiVO4 nue qui démontrait une densité de photocourant de 0,35 mA/cm2. à 1,23 V vs RHE. Une augmentation de 15% de la stabilité de l'électrode de BiVO4 modifiée par Al2O3 a également été observée au cours de 7,5 heures d'irradiation continue. De plus, grâce aux mesures de capacité de surface présentées à la Figure 3, il a été montré que la surcouche de Al2O3 passivait effectivement à passiver les états de surface des électrodes de BiVO4. La nature de la surface de BiVO4 a été étudiée en étudiant la réactivité de la poudre de BiVO4 avec un titrant chimique. L’existence de groupes hydroxyle de surface sur BiVO4 a été confirmée et quantifiée (max. 1,5 OH / nm2) par titrage chimique. La réaction de la poudre de BiVO4 avec une impulsion de AlMe3 et une impulsion de H2O a montré qu'il existait 1,2 molécules de CH4 dégagées par Bi-OH. Dans ce travail, nous avons pu mettre en évidence les facteurs importants dans la synthèse de BiVO4 et leur incidence sur la photoactivité résultante. Nous avons également réussi à passiver les états de surface de BiVO4 en utilisant Al2O3, ce qui n’est pas bien exploré dans la littérature. De plus, nous avons pu sonder et discuter de la nature de la surface de BiVO4. Ceci est une connaissance très fondamentale et le premier rapport à ce sujet, à notre connaissance. Une bonne compréhension de cette surface semi-conductrice importante et de ses interactions facilitera la conception d'un photoanode BiVO4 plus efficac

    Recent Advances in the BiVO4 Photocatalyst for Sun-Driven Water Oxidation: Top-Performing Photoanodes and Scale-Up Challenges

    Get PDF
    Photoelectrochemical (PEC) water splitting, which is a type of artificial photosynthesis, is a sustainable way of converting solar energy into chemical energy. The water oxidation half-reaction has always represented the bottleneck of this process because of the thermodynamic and kinetic challenges that are involved. Several materials have been explored and studied to address the issues pertaining to solar water oxidation. Significant advances have recently been made in the use of stable and relatively cheap metal oxides, i.e., semiconducting photocatalysts. The use of BiVO4 for this purpose can be considered advantageous because this catalyst is able to absorb a substantial portion of the solar spectrum and has favourable conduction and valence band edge positions. However, BiVO4 is also associated with poor electron mobility and slow water oxidation kinetics and these are the problems that are currently being investigated in the ongoing research in this field. This review focuses on the most recent advances in the best-performing BiVO4-based photoanodes to date. It summarizes the critical parameters that contribute to the performance of these photoanodes, and highlights so far unresolved critical features related to the scale-up of a BiVO4-based PEC water-splitting device

    Insights Into the Sunlight-Driven Water Oxidation by Ce and Er-Doped ZrO2

    Get PDF
    <p>In the present work, the activity of Ce and Er-doped ZrO<sub>2</sub> nanopowders for sun-driven photocatalytic water oxidation has been investigated. ZrO<sub>2</sub> powders with tunable amounts of tetragonal, monoclinic and cubic polymorphs have been synthesized by introducing Ce and Er (from 0.5 to 10 mol % on an oxide basis) through hydrothermal method. The aim of this work is to investigate the role of rare earth (RE) ions rich of electrons (Er<sup>3+</sup>) and with entirely empty levels (Ce<sup>4+</sup>) in the ZrO<sub>2</sub> matrix for the sun-driven photocatalytic water oxidation reaction. The samples have been characterized by means of UV-Vis spectroscopy, X-Ray diffraction (XRD), N<sub>2</sub> adsorption, X-ray photoelectron spectrophotometry (XPS) and transmission electronic microscopy (TEM) with energy dispersive spectroscopy (EDS). With respect to the bare ZrO<sub>2</sub> mainly containing monoclinic (m-) phase, an increasing amount of rare-earth (RE) dopant was found to improve the specific BET surface area and to stabilize the tetragonal (t-) or cubic (c-) polymorphs of ZrO<sub>2</sub> at room temperature. XRD data confirmed that dopants were mainly inserted in the t-ZrO<sub>2</sub> phase. The photocatalytic O<sub>2</sub> evolution from water under AM 1.5 G simulated sunlight illumination of the prepared samples have been correlated with their optical, structural and chemical properties. The effect of the dopant concentration on the chemical-physical and photocatalytic properties of the Er- and Ce-doped ZrO<sub>2</sub> materials was elucidated. The samples with 5% of RE oxide were the most active, i.e., three times more than pure zirconia. Their superior photocatalytic activity was found to be mainly correlated to two factors: (i) an optimal surface concentration of RE ions of about 3.7%, which increased charge carriers separation in the photocatalysts surface due more superficial defects of the t-ZrO<sub>2</sub> and a higher surface area, thus enhancing the reaction kinetics, (ii) a controlled amount of monoclinic vs. tetragonal (or cubic) polymorphs of zirconia with an optimum ratio of about 70/30 of t-ZrO<sub>2</sub>/m-ZrO<sub>2</sub>. Instead, the increased ability of the RE-doped ZrO<sub>2</sub> to harvest visible light was found to have a secondary role on the photocatalytic activity of the Ce-doped ZrO<sub>2</sub> material.</p
    corecore