229 research outputs found

    High-accuracy Casimir-Polder force calculations using the Discontinuous Galerkin Time-Domain method

    Full text link
    We describe a numerical time-domain approach for high-accuracy calculations of Casimir-Polder forces near micro-structured materials. The use of a time-domain formulation enables the investigation of a broad range of materials described by advanced material models, including nonlocal response functions. We validate the method by a number of example calculations for which we thoroughly investigate the convergence properties of the method, and comparing to analytical reference calculations, we find average relative errors as low as a few parts in a million. As an application example, we investigate the anisotropy-induced repulsive behavior of the Casimir-Polder force near a sharp gold wedge described by a hydrodynamic Drude model.Comment: 17 pages, 11 figure

    X-ray fluorescence (XRF) fingerprinting of Palaeogene deposits in Denmark

    Get PDF
    In this study, we test if cost-efficient X-ray fluorescence (XRF) analyses can be used to fingerprint Palaeogene clay and marl deposits in Denmark. A total of 67 samples from key sites in Denmark have been analysed. Our preliminary results indicate that it is possible locally within 10–30 km to distinguish between most of the Palaeogene units, but on a regional scale across Denmark, the units are not unique, and this probably reflects variations in clay mineralogy, grain size and calcareous content. Accordingly, we suggest that a comprehensive reference database is now needed if the full potential of the method is to be utilised, and this will ultimately result in more reliable geological models
    corecore