935 research outputs found

    CARHSP1 Is Required for Effective Tumor Necrosis Factor Alpha mRNA Stabilization and Localizes to Processing Bodies and Exosomes

    Get PDF
    Tumor necrosis factor alpha (TNF-α) is a critical mediator of inflammation, and its production is tightly regulated, with control points operating at nearly every step of its biosynthesis. We sought to identify uncharacterized TNF-α 3\u27 untranslated region (3\u27UTR)-interacting proteins utilizing a novel screen, termed the RNA capture assay. We identified CARHSP1, a cold-shock domain-containing protein. Knockdown of CARHSP1 inhibits TNF-α protein production in lipopolysaccharide (LPS)-stimulated cells and reduces the level of TNF-α mRNA in both resting and LPS-stimulated cells. mRNA stability assays demonstrate that CARHSP1 knockdown decreases TNF-α mRNA stability from a half-life (t(1/2)) of 49 min to a t(1/2) of 22 min in LPS-stimulated cells and from a t(1/2) of 29 min to a t(1/2) of 24 min in resting cells. Transfecting CARHSP1 into RAW264.7 cells results in an increase in TNF-α 3\u27UTR luciferase expression in resting cells and CARHSP1 knockdown LPS-stimulated cells. We examined the functional effect of inhibiting Akt, calcineurin, and protein phosphatase 2A and established that inhibition of Akt or calcineurin but not PP2A inhibits CARHSP1 function. Subcellular analysis establishes CARHSP1 as a cytoplasmic protein localizing to processing bodies and exosomes but not on translating mRNAs. We conclude CARHSP1 is a TNF-α mRNA stability enhancer required for effective TNF-α production, demonstrating the importance of both stabilization and destabilization pathways in regulating the TNF-α mRNA half-life

    Population and genomic analysis of the genus Halorubrum

    Get PDF
    The Halobacteria are known to engage in frequent gene transfer and homologous recombination. For stably diverged lineages to persist some checks on the rate of between lineage recombination must exist. We surveyed a group of isolates from the Aran-Bidgol endorheic lake in Iran and sequenced a selection of them. Multilocus Sequence Analysis (MLSA) and Average Nucleotide Identity (ANI) revealed multiple clusters (phylogroups) of organisms present in the lake. Patterns of intein and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) presence/absence and their sequence similarity, GC usage along with the ANI and the identities of the genes used in the MLSA revealed that two of these clusters share an exchange bias toward others in their phylogroup while showing reduced rates of exchange with other organisms in the environment. However, a third cluster, composed in part of named species from other areas of central Asia, displayed many indications of variability in exchange partners, from within the lake as well as outside the lake. We conclude that barriers to gene exchange exist between the two purely Aran-Bidgol phylogroups, and that the third cluster with members from other regions is not a single population and likely reflects an amalgamation of several populations

    Impact of sarcopenia on treatment tolerance in United States veterans with diffuse large B‐cell lymphoma treated with CHOP‐based chemotherapy

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134181/1/ajh24465_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134181/2/ajh24465.pd

    Does stream water composition at sleepers river in vermont reflect dynamic changes in soils during recovery from acidification?

    Get PDF
    Stream water pH and composition are widely used to monitor ongoing recovery from the deposition of strong anthropogenic acids in many forested headwater catchments in the northeastern United States. However, stream water composition is a function of highly complex and coupled processes, flowpaths, and variations in soil and bedrock composition. Spatial heterogeneity is especially pronounced in headwater catchments with steep topography, potentially limiting stream water composition as an indicator of changes in critical zone (CZ) dynamics during system recovery. To investigate the link between catchment characteristics, landscape position, and stream water composition we used long-term data (1991–2015) from the Sleepers River Research Watershed (SRRW) in northeastern Vermont. We investigated trends with time in stream water and trends with time, depth, and landscape position (upslope, midslope, and riparian zone) in groundwater (GW) and soil solution. We further determined soil elemental composition and mineralogy on archived (1996) and modern (2017) soil samples to assess changes in composition with time. SRRW is inherently well-buffered by calcite in bedrock and till, but soils had become acidified and are now recovering from acidification. Although base cations, especially Ca, decrease progressively with time in GW, riparian soils have become more enriched in Ca, due to a mixture of lateral and vertical transfers. At the same time stream water Ca fluxes increased over the past two decades, likely due to the leaching of (transient) legacy Ca from riparian zones and increased water fluxes. The stream water response therefore reflects the dynamic changes in soil chemistry, flow routing and water inputs

    Stem-Loop Recognition by DDX17 Facilitates miRNA Processing and Antiviral Defense

    Get PDF
    SummaryDEAD-box helicases play essential roles in RNA metabolism across species, but emerging data suggest that they have additional functions in immunity. Through RNAi screening, we identify an evolutionarily conserved and interferon-independent role for the DEAD-box helicase DDX17 in restricting Rift Valley fever virus (RVFV), a mosquito-transmitted virus in the bunyavirus family that causes severe morbidity and mortality in humans and livestock. Loss of Drosophila DDX17 (Rm62) in cells and flies enhanced RVFV infection. Similarly, depletion of DDX17 but not the related helicase DDX5 increased RVFV replication in human cells. Using crosslinking immunoprecipitation high-throughput sequencing (CLIP-seq), we show that DDX17 binds the stem loops of host pri-miRNA to facilitate their processing and also an essential stem loop in bunyaviral RNA to restrict infection. Thus, DDX17 has dual roles in the recognition of stem loops: in the nucleus for endogenous microRNA (miRNA) biogenesis and in the cytoplasm for surveillance against structured non-self-elements

    Influence of Total Western Diet on Docosahexaenoic Acid Suppression of Silica-Triggered Lupus Flaring in NZBWF1 Mice

    Get PDF
    Lupus is a debilitating multi-organ autoimmune disease clinically typified by periods of flare and remission. Exposing lupus-prone female NZBWF1 mice to crystalline silica (cSiO2), a known human autoimmune trigger, mimics flaring by inducing interferon-related gene (IRG) expression, inflammation, ectopic lymphoid structure (ELS) development, and autoantibody production in the lung that collectively accelerate glomerulonephritis. cSiO2-triggered flaring in this model can be prevented by supplementing mouse diet with the ω-3 polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA). A limitation of previous studies was the use of purified diet that, although optimized for rodent health, does not reflect the high American intake of saturated fatty acid (SFA), ω-6 PUFAs, and total fat. To address this, we employed here a modified Total Western Diet (mTWD) emulating the 50th percentile U.S. macronutrient distribution to discern how DHA supplementation and/or SFA and ω-6 reduction influences cSiO2-triggered lupus flaring in female NZBWF1 mice. Six-week-old mice were fed isocaloric experimental diets for 2 wks, intranasally instilled with cSiO2 or saline vehicle weekly for 4 wks, and tissues assessed for lupus endpoints 11 wks following cSiO2 instillation. In mice fed basal mTWD, cSiO2 induced robust IRG expression, proinflammatory cytokine and chemokine elevation, leukocyte infiltration, ELS neogenesis, and autoantibody production in the lung, as well as early kidney nephritis onset compared to vehicle-treated mice fed mTWD. Consumption of mTWD containing DHA at the caloric equivalent to a human dose of 5 g/day dramatically suppressed induction of all lupus-associated endpoints. While decreasing SFA and ω-6 in mTWD modestly inhibited some disease markers, DHA addition to this diet was required for maximal protection against lupus development. Taken together, DHA supplementation at a translationally relevant dose was highly effective in preventing cSiO2-triggered lupus flaring in NZBWF1 mice, even against the background of a typical Western diet

    West Nile Virus Isolated from a Virginia Opossum (Didelphis virginiana) in Northwestern Missouri, USA, 2012

    Get PDF
    We describe the isolation of West Nile virus (WNV; Flaviviridae, Flavivirus) from blood of a Virginia opossum (Didelphis virginiana) collected in northwestern Missouri, USA in August 2012. Sequencing determined that the virus was related to lineage 1a WNV02 strains. We discuss the role of wildlife in WNV disease epidemiology

    The largest deep-ocean silicic volcanic eruption of the past century

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science Advances 4 (2018): e1701121, doi:10.1126/sciadv.1701121.The 2012 submarine eruption of Havre volcano in the Kermadec arc, New Zealand, is the largest deep-ocean eruption in history and one of very few recorded submarine eruptions involving rhyolite magma. It was recognized from a gigantic 400-km2 pumice raft seen in satellite imagery, but the complexity of this event was concealed beneath the sea surface. Mapping, observations, and sampling by submersibles have provided an exceptionally high fidelity record of the seafloor products, which included lava sourced from 14 vents at water depths of 900 to 1220 m, and fragmental deposits including giant pumice clasts up to 9 m in diameter. Most (>75%) of the total erupted volume was partitioned into the pumice raft and transported far from the volcano. The geological record on submarine volcanic edifices in volcanic arcs does not faithfully archive eruption size or magma production.This research was funded by Australian Research Council Postdoctoral fellowships (DP110102196 and DE150101190 to R. Carey), a short-term postdoctoral fellowship grant from the Japan Society for the Promotion of Science (to R. Carey), National Science Foundation grants (OCE1357443 to B.H., OCE1357216 to S.A.S., and EAR1447559 to J.D.L.W.), and a New Zealand Marsden grant (U001616 to J.D.L.W.). J.D.L.W. and A.M. were supported by a research grant and PhD scholarship from the University of Otago. R.W. was supported by NIWA grant COPR1802. J.D.L.W. and F.C.-T. were supported by GNS Science grants CSA-GHZ and CSA-EEZ. M.J. was supported by the U.S. Department of Defense (DoD) through the National Defense Science and Engineering Graduate Fellowship (NDSEG) Program

    Fluorescent excimers and exciplexes of the purine base derivative 8-phenylethynyl-guanine in DNA hairpins

    Get PDF
    The ground- and excited-state electronic interactions between the nucleobase analog 8-(4′-phenylethynyl)deoxyguanosine, EG, with natural nucleobases and 7-deazaguanine, as well as between adjacent EG base analogs, have been characterized using a combination of steady-state spectroscopy and time-resolved fluorescence, absorption, and stimulated Raman spectroscopies. The properties of the nucleoside EG-H2 are only weakly perturbed upon incorporation into synthetic DNA hairpins in which thymine, cytosine or adenine are the bases flanking EG. Incorporation of the nucleoside to be adjacent to guanine or deazaguanine results in the formation of short-lived (40–80 ps) exciplexes, the charge transfer character of which increases as the oxidation potential of the donor decreases. Hairpins possessing two or three adjacent EG base analogs display exciton-coupled circular dichroism in the ground state and form long-lived fluorescent excited states upon electronic excitation. Incorporation of EG into the helical scaffold of the DNA hairpins places it adjacent to its neighboring nucleobases or a second EG, thus providing the close proximity required for the formation of exciplex or excimer intermediates upon geometric relaxation of the short-lived EG excited state. The three time-resolved spectroscopic methods employed permit both the characterization of the several intermediates and the kinetics of their formation and decay
    corecore