29 research outputs found
Construction of an Environmental Quality Index for Public Health Research
Background
A more comprehensive estimate of environmental quality would improve our understanding of the relationship between environmental conditions and human health. An environmental quality index (EQI) for all counties in the U.S. was developed. Methods
The EQI was developed in four parts: domain identification; data source acquisition; variable construction; and data reduction. Five environmental domains (air, water, land, built and sociodemographic) were recognized. Within each domain, data sources were identified; each was temporally (years 2000–2005) and geographically (county) restricted. Variables were constructed for each domain and assessed for missingness, collinearity, and normality. Domain-specific data reduction was accomplished using principal components analysis (PCA), resulting in domain-specific indices. Domain-specific indices were then combined into an overall EQI using PCA. In each PCA procedure, the first principal component was retained. Both domain-specific indices and overall EQI were stratified by four rural–urban continuum codes (RUCC). Higher values for each index were set to correspond to areas with poorer environmental quality. Results
Concentrations of included variables differed across rural–urban strata, as did within-domain variable loadings, and domain index loadings for the EQI. In general, higher values of the air and sociodemographic indices were found in the more metropolitan areas and the most thinly populated areas have the lowest values of each of the domain indices. The less-urbanized counties (RUCC 3) demonstrated the greatest heterogeneity and range of EQI scores (−4.76, 3.57) while the thinly populated strata (RUCC 4) contained counties with the most positive scores (EQI score ranges from −5.86, 2.52). Conclusion
The EQI holds promise for improving our characterization of the overall environment for public health. The EQI describes the non-residential ambient county-level conditions to which residents are exposed and domain-specific EQI loadings indicate which of the environmental domains account for the largest portion of the variability in the EQI environment. The EQI was constructed for all counties in the United States, incorporating a variety of data to provide a broad picture of environmental conditions. We undertook a reproducible approach that primarily utilized publically-available data sources
Beneficial Use Impairments, Degradation of Aesthetics, and Human Health: A Review
In environmental programs and blue/green space development, improving aesthetics is a common goal. There is broad interest in understanding the relationship between ecologically sound environments that people find aesthetically pleasing and human health. However, to date, few studies have adequately assessed this relationship, and no summaries or reviews of this line of research exist. Therefore, we undertook a systematic literature review to determine the state of science and identify critical needs to advance the field. Keywords identified from both aesthetics and loss of habitat literature were searched in PubMed and Web of Science databases. After full text screening, 19 studies were included in the review. Most of these studies examined some measure of greenspace/bluespace, primarily proximity. Only one study investigated the impacts of making space quality changes on a health metric. The studies identified for this review continue to support links between green space and various metrics of health, with additional evidence for blue space benefits on health. No studies to date adequately address questions surrounding the beneficial use impairment degradation of aesthetics and how improving either environmental quality (remediation) or ecological health (restoration) efforts have impacted the health of those communities
The associations between environmental quality and preterm birth in the United States, 2000–2005: a cross-sectional analysis
Abstract Background Many environmental factors have been independently associated with preterm birth (PTB). However, exposure is not isolated to a single environmental factor, but rather to many positive and negative factors that co-occur. The environmental quality index (EQI), a measure of cumulative environmental exposure across all US counties from 2000—2005, was used to investigate associations between ambient environment and PTB. Methods With 2000–2005 birth data from the National Center for Health Statistics for the United States (n = 24,483,348), we estimated the association between increasing quintiles of the EQI and county-level and individual-level PTB; we also considered environmental domain-specific (air, water, land, sociodemographic and built environment) and urban–rural stratifications. Results Effect estimates for the relationship between environmental quality and PTB varied by domain and by urban–rural strata but were consistent across county- and individual-level analyses. The county-level prevalence difference (PD (95 % confidence interval) for the non-stratified EQI comparing the highest quintile (poorest environmental quality) to the lowest quintile (best environmental quality) was −0.0166 (−0.0198, −0.0134). The air and sociodemographic domains had the strongest associations with PTB; PDs were 0.0196 (0.0162, 0.0229) and −0.0262 (−0.0300, −0.0224) for the air and sociodemographic domain indices, respectively. Within the most urban strata, the PD for the sociodemographic domain index was 0.0256 (0.0205, 0.0307). Odds ratios (OR) for the individual-level analysis were congruent with PDs. Conclusion We observed both strong positive and negative associations between measures of broad environmental quality and preterm birth. Associations differed by rural–urban stratum and by the five environmental domains. Our study demonstrates the use of a large scale composite environment exposure metric with preterm birth, an important indicator of population health and shows potential for future research
Fine particulate matter-sudden death association modified by ventricular hypertrophy and inflammation: a case-crossover study
Background Sudden death accounts for approximately 10% of deaths among working-age adults and is associated with poor air quality. Objectives: To identify high-risk groups and potential modifiers and mediators of risk, we explored previously established associations between fine particulate matter (PM2.5) and sudden death stratified by potential risk factors. Methods Sudden death victims in Wake County, NC, from 1 March 2013 to 28 February 2015 were identified by screening Emergency Medical Systems reports and adjudicated (n = 399). Daily PM2.5 concentrations for Wake County from the Air Quality Data Mart were linked to event and control periods. Potential modifiers included greenspace metrics, clinical conditions, left ventricular hypertrophy (LVH), and neutrophil-to-lymphocyte ratio (NLR). Using a case-crossover design, conditional logistic regression estimated the OR (95%CI) for sudden death for a 5 μg/m3 increase in PM2.5 with a 1-day lag, adjusted for temperature and humidity, across risk factor strata. Results Individuals having LVH or an NLR above 2.5 had PM2.5 associations of greater magnitude than those without [with LVH OR: 1.90 (1.04, 3.50); NLR > 2.5: 1.25 (0.89, 1.76)]. PM2.5 was generally less impactful for individuals living in areas with higher levels of greenspace. Conclusion LVH and inflammation may be the final step in the causal pathway whereby poor air quality and traditional risk factors trigger arrhythmia or myocardial ischemia and sudden death. The combination of statistical evidence with clinical knowledge can inform medical providers of underlying risks for their patients generally, while our findings here may help guide interventions to mitigate the incidence of sudden death
Fine particulate matter-sudden death association modified by ventricular hypertrophy and inflammation: a case-crossover study
BackgroundSudden death accounts for approximately 10% of deaths among working-age adults and is associated with poor air quality. Objectives: To identify high-risk groups and potential modifiers and mediators of risk, we explored previously established associations between fine particulate matter (PM2.5) and sudden death stratified by potential risk factors.MethodsSudden death victims in Wake County, NC, from 1 March 2013 to 28 February 2015 were identified by screening Emergency Medical Systems reports and adjudicated (n = 399). Daily PM2.5 concentrations for Wake County from the Air Quality Data Mart were linked to event and control periods. Potential modifiers included greenspace metrics, clinical conditions, left ventricular hypertrophy (LVH), and neutrophil-to-lymphocyte ratio (NLR). Using a case-crossover design, conditional logistic regression estimated the OR (95%CI) for sudden death for a 5 μg/m3 increase in PM2.5 with a 1-day lag, adjusted for temperature and humidity, across risk factor strata.ResultsIndividuals having LVH or an NLR above 2.5 had PM2.5 associations of greater magnitude than those without [with LVH OR: 1.90 (1.04, 3.50); NLR > 2.5: 1.25 (0.89, 1.76)]. PM2.5 was generally less impactful for individuals living in areas with higher levels of greenspace.ConclusionLVH and inflammation may be the final step in the causal pathway whereby poor air quality and traditional risk factors trigger arrhythmia or myocardial ischemia and sudden death. The combination of statistical evidence with clinical knowledge can inform medical providers of underlying risks for their patients generally, while our findings here may help guide interventions to mitigate the incidence of sudden death
Exploring links between greenspace and sudden unexpected death: A spatial analysis
Greenspace has been increasingly recognized as having numerous health benefits. However, its effects are unknown concerning sudden unexpected death (SUD), commonly referred to as sudden cardiac death, which constitutes a large proportion of mortality in the United States. Because greenspace can promote physical activity, reduce stress and buffer air pollutants, it may have beneficial effects for people at risk of SUD, such as those with heart disease, hypertension, and diabetes mellitus. Using several spatial techniques, this study explored the relationship between SUD and greenspace. We adjudicated 396 SUD cases that occurred from March 2013 to February 2015 among reports from emergency medical services (EMS) that attended out-of-hospital deaths in Wake County (central North Carolina, USA). We measured multiple greenspace metrics in each census tract, including the percentages of forest, grassland, average tree canopy, tree canopy diversity, near-road tree canopy and greenway density. The associations between SUD incidence and these greenspace metrics were examined using Poisson regression (non-spatial) and Bayesian spatial models. The results from both models indicated that SUD incidence was inversely associated with both greenway density (adjusted risk ratio [RR] = 0.82, 95% credible/ confidence interval [CI]: 0.69–0.97) and the percentage of forest (adjusted RR = 0.90, 95% CI: 0.81–0.99). These results suggest that increases in greenway density by 1 km/km2 and in forest by 10% were associated with a decrease in SUD risk of 18% and 10%, respectively. The inverse relationship was not observed between SUD incidence and other metrics, including grassland, average tree canopy, near-road tree canopy and tree canopy diversity. This study implies that greenspace, specifically greenways and forest, may have beneficial effects for people at risk of SUD. Further studies are needed to investigate potential causal relationships between greenspace and SUD, and potential mechanisms such as promoting physical activity and reducing stress
Beneficial Use Impairments, Degradation of Aesthetics, and Human Health: A Review
In environmental programs and blue/green space development, improving aesthetics is a common goal. There is broad interest in understanding the relationship between ecologically sound environments that people find aesthetically pleasing and human health. However, to date, few studies have adequately assessed this relationship, and no summaries or reviews of this line of research exist. Therefore, we undertook a systematic literature review to determine the state of science and identify critical needs to advance the field. Keywords identified from both aesthetics and loss of habitat literature were searched in PubMed and Web of Science databases. After full text screening, 19 studies were included in the review. Most of these studies examined some measure of greenspace/bluespace, primarily proximity. Only one study investigated the impacts of making space quality changes on a health metric. The studies identified for this review continue to support links between green space and various metrics of health, with additional evidence for blue space benefits on health. No studies to date adequately address questions surrounding the beneficial use impairment degradation of aesthetics and how improving either environmental quality (remediation) or ecological health (restoration) efforts have impacted the health of those communities
Exposure to Elemental Carbon, Organic Carbon, Nitrate, and Sulfate Fractions of Fine Particulate Matter and Risk of Preterm Birth in New Jersey, Ohio, and Pennsylvania (2000–2005)
Background: Particulate matter ≤ 2.5 μm in aerodynamic diameter (PM2.5) has been consistently associated with preterm birth (PTB) to varying degrees, but roles of PM2.5 species have been less studied.
Objective: We estimated risk differences (RD) of PTB (reported per 106 pregnancies) associated with change in ambient concentrations of elemental carbon (EC), organic carbon (OC), nitrates (NO3), and sulfates (SO4).
Methods: From live birth certificates from three states, we constructed a cohort of singleton pregnancies at or beyond 20 weeks of gestation from 2000 through 2005 (n = 1,771,225; 8% PTB). We estimated mean species exposures for each week of gestation from monitor-corrected Community Multi-Scale Air Quality modeling data. RDs and 95% confidence intervals (CIs) for four PTB categories were estimated for each exposure using linear regression, adjusted for maternal race/ethnicity, marital status, education, age, smoking, maximum temperature, ozone, and season of conception. We also adjusted for other species in multi-species models.
Results: RDs varied by exposure window and outcome period. EC was positively associated with PTB after 27 and before 35 weeks of gestation. For example, for a 0.25-μg/m3 increase in EC exposure during gestational week 9, RD = 96 (95% CI: –20, 213) and RD = 145 (95% CI: –50, 341) for PTB during weeks 28–31 and 32–34, respectively. Associations with OCs were null or negative. RDs for NO3 were elevated with exposure in early weeks of gestation, and null in later weeks. RDs for SO4 exposure were positively associated with PTB, though magnitude varied across gestational weeks. We observed effect measure modification for associations between EC and PTB by race/ethnicity and smoking status.
Conclusion: EC and SO4 may contribute to associations between PM2.5 and PTB. Associations varied according to the timing of exposure and the timing of PTB