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RESEARCH Open Access

Construction of an environmental quality index
for public health research
Lynne C Messer1, Jyotsna S Jagai2,3, Kristen M Rappazzo4,5 and Danelle T Lobdell2*

Abstract

Background: A more comprehensive estimate of environmental quality would improve our understanding of the
relationship between environmental conditions and human health. An environmental quality index (EQI) for all
counties in the U.S. was developed.

Methods: The EQI was developed in four parts: domain identification; data source acquisition; variable construction;
and data reduction. Five environmental domains (air, water, land, built and sociodemographic) were recognized.
Within each domain, data sources were identified; each was temporally (years 2000–2005) and geographically
(county) restricted. Variables were constructed for each domain and assessed for missingness, collinearity, and
normality. Domain-specific data reduction was accomplished using principal components analysis (PCA), resulting in
domain-specific indices. Domain-specific indices were then combined into an overall EQI using PCA. In each PCA
procedure, the first principal component was retained. Both domain-specific indices and overall EQI were stratified
by four rural–urban continuum codes (RUCC). Higher values for each index were set to correspond to areas with
poorer environmental quality.

Results: Concentrations of included variables differed across rural–urban strata, as did within-domain variable
loadings, and domain index loadings for the EQI. In general, higher values of the air and sociodemographic indices
were found in the more metropolitan areas and the most thinly populated areas have the lowest values of each of
the domain indices. The less-urbanized counties (RUCC 3) demonstrated the greatest heterogeneity and range of
EQI scores (−4.76, 3.57) while the thinly populated strata (RUCC 4) contained counties with the most positive scores
(EQI score ranges from −5.86, 2.52).

Conclusion: The EQI holds promise for improving our characterization of the overall environment for public
health. The EQI describes the non-residential ambient county-level conditions to which residents are exposed and
domain-specific EQI loadings indicate which of the environmental domains account for the largest portion of the
variability in the EQI environment. The EQI was constructed for all counties in the United States, incorporating a
variety of data to provide a broad picture of environmental conditions. We undertook a reproducible approach that
primarily utilized publically-available data sources.

Keywords: Environmental quality, Air quality, Water quality, Land quality, Built environment, Sociodemographic,
Rural–urban status
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Background
Polluted environments have contributed to harmful expo-
sures associated with human morbidity [1-5]. The empirical
characterization of environmental conditions, however, is
challenging because the non-residential ambient environ-
ment comprises an almost uncountable array of complex
mixtures, which are difficult to quantify simultaneously.
Moreover, the effect of the surrounding environment on
human morbidity is more broadly understood to include
exposures such as socioeconomic deprivation, access to
healthy food, highway safety, etc. The complex nature of
the overall environment likely contributes to the practice of
using isolated exposures to represent ambient conditions.
Environment often encompasses traditional exposure like

pollutants, chemicals, and water quality, as well as other
non-genetic exposures such as the built environment, nu-
trition, and socioeconomic climate. In environmental epi-
demiology, ambient conditions are usually explored singly:
one exposure or category of exposure at a time (e.g., ozone,
pesticides, water disinfection by-products) [6]. Sometimes
mixtures are used within one domain (e.g., air data) [1,7],
and other times total environments may be characterized
(e.g., exposure to healthy food environment) [8,9]. Still
other work includes entire environmental domains to esti-
mate non-residential ambient conditions (e.g., socioeco-
nomic deprivation) [10,11]. And rarely, if ever, are multiple
environmental domains combined, even though we know
humans are exposed to these multiple environmental do-
mains simultaneously.
Multiple challenges exist in combining across environ-

mental domains or environmental types to construct
one environmental measure. Much of the data we use to
characterize environmental conditions are collected for
administrative, regulatory and non-research purposes
[12]. Measures collected at different scales would need
to be meaningfully combined. They may also be mea-
sured at different units of spatial and temporal aggrega-
tion. A more complete estimation of the non-residential
ambient environment may also be limited by statistical
approaches and disciplinary practices. Statistical impre-
cision of estimates may be a concern if many variables
are necessary to appropriately estimate a given domain
or overall environment and a limited number of out-
comes are being distributed across multiple exposure
and covariate categories. From a disciplinary perspective,
most research teams rarely include more than one type
of exposure specialist. But many of these challenges can
be readily overcome with appropriate statistical methods
and interdisciplinary research teams.
Here we describe a method of constructing an environ-

mental quality index (EQI) representing multiple domains
of the non-residential ambient environment, including
the air, water, land, built and sociodemographic domains.
This manuscript outlines a reproducible approach to the

development of the EQI that capitalizes almost exclusively
on publically-available data sources.

Methods
Domain identification
A fuller description of the methods used for EQI con-
struction is available in Additional file 1. We initially iden-
tified three environmental domains, air, water and land,
based on selected chapters from the United States (U.S.)
Environmental Protection Agency (EPA) 2008 Report on
the Environment (ROE) [13]. Following consultation with
the ROE, the team undertook a more extensive review to
complement the domains and data sources already identi-
fied, which included the following activities: 1) identifying
precise literature search terms, limits and reporting for-
mat; 2) conducting a literature review on “Environment
and Infant Mortality”; 3) recording findings; 4) finalizing
search terms for within-domain literature review; 5) con-
ducting a within-domain literature review; and 6) record-
ing findings. We chose infant mortality to be the health
outcome for the literature search for several reasons: 1) in-
fant mortality is a well-researched and understood health
outcome; 2) infant mortality is a general outcome, with
known positive associations with other lifetime health
measures such as disability-adjusted life expectancy [14];
as such, the environmental exposure–health outcome re-
lationship would not be restricted to one organ (e.g., heart
disease) or system (e.g., asthma); 3) the research team was
largely composed of reproductive/perinatal researchers for
whom infant mortality was an important health outcome.
The literature review was conducted in PubMed for
the years 1980–2008. We added the built and sociodemo-
graphic domains based on the findings of the literature
review. From this broad search, and our a priori identifica-
tion, five specific domains were considered: air, water,
land, built, and sociodemographic environments.

Geographic level of analysis
The unit of analysis for EQI development was U.S.
county. While county is a broad unit of analysis that
may not allow for small-geography specificity, most na-
tional data sources are available at the county level. We
wanted to construct a replicable process and product for
use across the United States and we deemed the county
level as the most widely generalizable. It also enables
linkage to health data aggregated to the county level,
such as national birth statistics from the National Center
for Health Statistics (NCHS).

Data source time period
At the initiation of the EQI development, we restricted
the temporal framework to 2000 to 2005. We wanted
to primarily utilize publicly available data, and this six-
year window was chosen based on availability of both
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environmental (including decennial census) and out-
come data (e.g., national birth records).

Data sources
The data sources are described in detail elsewhere [15].
Briefly, data sources were considered for EQI inclusion
based on temporal, spatial, and quality-related criteria.
Temporal appropriateness required data to represent the
2000 to 2005 time period. Data sources were considered
spatially appropriate if data were available at, or could
be aggregated or interpolated to represent, the county
level for all 50 states. Data quality, especially related to
data source documentation, was determined by data
source managers (in data reports and internal documen-
tation), project investigators, and with the larger field of
environmental research, through use and critique of the
various data sources.
The air domain included two data sources: the Air

Quality System (AQS) [16], which is a repository of na-
tional ambient air concentrations from monitors across
the country for criteria air pollutants; and the National-
Scale Air Toxics Assessment (NATA) [17], which uses
emissions inventory data and air dispersion models to
estimate non-residential ambient concentrations of haz-
ardous air pollutants (HAPs).
The water domain comprised five data sources: Water-

shed Assessment, Tracking & Environmental Results
(WATERS) Program Database [18], Estimates of Water
Use in the U.S. [19], National Atmospheric Deposition
Program (NDAP) [20], Drought Monitor Network [21],
and National Contaminant Occurrence Database (NCOD)
[22]. The WATERS Program Database is a collection of
data from various EPA-conducted water assessment pro-
grams including impairment, water quality standards,
pollutant discharge permits, and beach violations and clo-
sures. The Estimates of Water Use in the U.S. is calculated
by the United States Geological Survey (USGS) and in-
cludes county-level estimates of water withdrawals for
domestic, agricultural, and industrial uses. The NDAP
dataset provides measures of chemicals in precipitation
using a network of monitors located throughout the U.S.
The Drought Monitor Data provides raster data on the
drought status for the entire U.S. on a weekly basis. The
NCOD dataset provides data from public water supplies
on 69 different contaminants.
The land domain was constructed using data from five

sources. The 2002 National Pesticide Use Database [23]
estimates state-level pesticide usage based on pesticide
ingredients and crop type. The 2002 Census of Agricul-
ture [24] is a summary of agricultural activity, including
information about crops, livestock, and chemicals used.
The National Priority Site data [25] includes location of
and information on sites that have been placed on the
National Priority List (NPL), including indicators for

major facilities (e.g., Superfund sites), large quantity gen-
erators, toxics release inventory, Resources Conservation
and Recovery Act treatment, storage and disposal facil-
ities, corrective action facilities, assessment, cleanup,
and redevelopment exchange (brownfield sites), and
section seven tracking system pesticide producing site
locations. The National Geochemical Survey [26] con-
tains geochemical data (e.g., arsenic, selenium, mercury,
lead, zinc, magnesium, manganese, iron, etc.). The fifth
source is the EPA Radon Zone Map [27], which identi-
fies areas of the U.S. with the potential for elevated in-
door radon levels.
The sociodemographic domain included two data

sources: the U.S. Census [28] and Federal Bureau of In-
vestigation (FBI) Uniform Crime Report (UCR) [29]. The
U.S. Census collects population and housing data every
10 years, economic and government data every five years
and the American Community Survey annually. FBI
UCR rate data are available annually and by crime type
(violent or property).
The built environment domain employed five data

sources. Dun and Bradstreet collects commercial infor-
mation on businesses and contains more than 195 mil-
lion records [30]. These data are the only data used in
the EQI which are not free, though they are publically
available for purchase. Topographically Integrated Geo-
coding Encoding Reference (TIGER) [31] data provides
maps and road layers for the U.S. at multiple units of
census geography. The Fatality Analysis Reporting Sys-
tem (FARS) [32] data is a national census providing the
National Highway Traffic Safety administration yearly
reports of fatal injuries suffered in motor vehicle crashes.
Housing and Urban Development (HUD) [33] data pro-
vide a count of low-rent and section-eight housing in
each housing authority area, which corresponds to cities.
The built environment domain also included the percent
using public transportation variable from the census,
which was not included in the sociodemographic do-
main; census data have been previously described.

EQI construction
Variable construction
Each of the data sources could plausibly give rise to hun-
dreds of potentially relevant variables; therefore only
specific variables were selected – or in some cases, con-
structed – from each of the data sources. A detailed
listing of all the constructed variables is available in
Additional file 2.

Statistical processes common to all variables in all domains
Variable collinearity was assessed within subgrouping
and when the correlation coefficients exceeded 0.7, one
variable was chosen for inclusion. Similar variables with
low numbers of missing values were retained over those
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with high numbers of missing values. If missingness was
approximately equal, the decision about which variable
to retain was based on exposure routes from hazard
summaries [34], with routes from the appropriate do-
main being primary.
Variable missingness was also assessed to determine if

missing data were missing or instead represented true
zeros. For instance, when crime data was missing for a
county we considered that missing because crime occurs
most everywhere but when beach closure data were
missing for a county, we considered those to be true
zeros because not all counties have beaches. When more
than 50 percent of all counties were missing or zero for
a given variable, that variable was excluded from further
consideration for the EQI.
Because of the data reduction approach used for index

construction (principal components analysis (PCA), dis-
cussed in detail below), and the statistical assumptions im-
plied by this method, variables were assessed for normality.
This was done by visually comparing histograms of each
variable’s distribution to a normal distribution for that vari-
able. When violations of normality were observed, transfor-
mations were considered to enable the variable to best
approximate the normal distribution. For each variable,
natural-log (hereafter, log), logit, and squared-root transfor-
mations were considered and distributions were visually
inspected again. In each case, log transformation resulted in
the most normally-appearing distribution. For variables
with true zeros, log-transformation was achieved by adding
half of the non-zero minimum value to all observations and
then taking the natural log of that value.
Finally, variables were assessed to determine valences

for environmental quality. Valences, or the positive or
negative direction of the indices, were determined based
on potential for human health and ecological effects.
Domains containing variables with known or suspected
potential for adverse health outcomes (e.g., increased
morbidity or mortality) or ecologic effects (e.g., disrup-
tion of biotic integrity) were considered to have a nega-
tive valence with higher values representing poorer
environmental quality. In some cases, the valence of a
given variable was unknown, in which case the valence
would be empirically assigned through the data reduc-
tion/PCA process by virtue of its association with other
variables in that domain.

Air domain variable construction
Daily concentrations of six criteria air pollutants were
downloaded from the AQS [16] and temporally averaged
to get annual mean concentrations for each monitor
location from 2000 to 2005. The annual means were
then temporally and spatially kriged to estimate annual
concentrations at each county center point. An expo-
nential covariance structure for the spatial covariance

was implemented to represent both temporal and spatial
variability. These values were then averaged for the full
study period.
The 2002 NATA [17] database was used as an initial

source of county-level HAP concentrations for evalu-
ation of variables to include. Emissions estimates were
retrieved from the NATAs for 1999 and 2005, and esti-
mates for each variable from the three NATAs were av-
eraged to get a composite emissions estimate across the
study period. Air domain variables were then checked
for normality of distribution and where indicated, were
log-transformed. For both criteria and hazardous air pol-
lutants, higher concentrations are negative for air qual-
ity. Therefore, the valence of the air domain is negative.

Water domain variable construction
Water impairment is determined for multiple types of
water usage: agricultural, drinking, recreational, wildlife
and industrial. Using the WATERS [18] database and
joining the data in GIS software with measures of stream
length in the Reach Address Database [35], a cumulative
measure of percent of water impaired for any use was
used to represent overall water quality in the county.
Water contamination is caused by several sources and

we used the number of National Pollutant Discharge
Elimination System (NPDES) [36] permits in a county as a
proxy for general water contamination. Three composite
variables were included in the EQI: a composite for num-
ber of sewage permits, a composite for industrial permits,
and one for stormwater permits, all per 1000 km of stream
length per county.
Recreational water quality was assessed also using the

WATERS database [18], from which we created three var-
iables for number of days of beach closure - for any event,
for contamination events, and for rain events in a county.
The quality of the water used for domestic needs data

was extracted from the Estimates of Water Use in the U.S.
[19] database as a proxy for domestic water quality from
which two variables were included in the EQI: the percent
of population on self-supplied water supplies and the
percent of those on public water supplies which are on
surface waters.
The atmospheric deposition of chemicals can affect

water quality. The NDAP [20] dataset provides measures
for the concentration of nine chemicals in precipitation,
calcuim, magnesium, potassium, sodium, ammonium, ni-
trate, chloride, sulfate, and mercury. Annual summary
data from each monitoring site for each year 2000–2005
were spatially kriged, using an exponential covariance
structure, to achieve national coverage and county level
estimates. The annual estimates for each pollutant were
then averaged over the six-year study period. The data for
all pollutants, except sulfate, were skewed and therefore
were log-transformed to achieve normal distributions.
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We expect that drought affects the concentration of
pathogens and chemicals in waters and therefore can
affect water quality. The Drought Monitor [21] dataset
provides raster data on six possible drought status con-
ditions for the entire U.S. on a weekly basis. The data
were spatially aggregated to the county level to estimate
the percentage of the county in each drought status con-
dition. From this data we used the percentage of the
county in extreme drought (D3-D4) in the EQI.
Chemical contamination of water supplies was ex-

tracted from the NCOD [22] dataset which provides data
on 69 contaminants provided by public water supplies
throughout the country for the period from 1998–2005.
Data for all samples in a county for each contaminant
were averaged over the entire time period of the data and
log-transformed to achieve normal distributions. Missing
values were set to zero, with the assumption that lack of
measurement for an area indicated low concern for con-
tamination with that particular contaminant.
The majority of variables in the water domain are esti-

mates of pollutants for which higher values are considered
negative for water quality. The final valence of the water
domain is negative, indicating a higher water domain
score is associated with poorer environmental quality.

Land domain variable construction
Information on the agricultural environment, were ob-
tained from the 2002 Census of Agriculture [24]. In total,
eight variables representing agriculture were constructed
and county-level percentages (acres applied per county
total acreage) were calculated and log-transformed.
Variables specific to pesticide application were also

constructed. Herbicide, insecticide, and fungicide use for
each county were estimated using crop data from the
2002 Census of Agriculture and state pesticide use data
from the 2002 National Pesticide Use Dataset [23]. All
pesticide variables were log-transformed.
The natural geochemistry and soil contamination of

an area was estimated using the National Geochemical
Survey (NGS) data [26]. These data, collected for stream
sediments, soils, and other media, were combined at the
county level to estimate the mean values of 13 geochem-
ical contaminants available and were log-transformed.
Large industrial facilities represent sources for pollut-

ants released into the environment. The National Prior-
ity List [25] data from the EPA provided information on
facilities for the U.S. Because many counties had at least
one, but no counties had all six of the facility types
present, a composite facilities data variable was con-
structed by summing the count of any one of the six fa-
cilities types (brownfield sites [37], superfund sites [38],
toxic release inventory sites [39], pesticide producing lo-
cation sites [40], large quantity generator sites [41], and
treatment, storage and disposal sites [42]) across the

counties. The facilities rate variable was assessed for nor-
mality and log-transformed.
Finally, the potential for elevated indoor radon levels

was represented using county score from the EPA Radon
Zone map [27].
As all constructs in the land domain were determined

to have a negative valence, the valence of the land do-
main as a whole is also negative, indicating a higher land
domain score represents poor environmental quality.

Sociodemographic domain
The sociodemographic environment is an important en-
vironment for human health. Eleven variables from the
United States Census [28] were included in the sociode-
mographic domain of the EQI. The sociodemographic
domain contains a mix of positive and negative features;
therefore when the sociodemographic domain was con-
structed, positive variables were reverse-coded to ensure
that a higher amount of the sociodemographic domain
represented adverse environmental conditions.
The area-level crime environment was represented using

the Federal Bureau of Investigation (FBI) Uniform Crime
Reports (UCR) [29]. These data required some manipula-
tion for inclusion in the EQI. Because crime reporting is
voluntary and crime data are reported for less than half the
U.S. counties, yet it seemed unlikely that no crimes oc-
curred in the areas with no reported crime, crime data were
spatially and temporally kriged to estimate values for coun-
ties with no reported crime. Kriging employed a double ex-
ponential covariance structure for the spatial covariance;
one structure represented short-range variability and the
other long-range variability. The covariance model was fit
to experimental covariance values using a least squares
method and demonstrated sufficient fit. Varying geograph-
ical unit sizes were not explicitly accounted for through the
kriging estimates, but crime estimates were made for 57
percent of U.S. counties, mostly in rural areas. The crime
variable was log-transformed for inclusion in the EQI.
Both constructs in the sociodemographic domain have a

negative valence. Therefore, the final valence of the socio-
demographic domain is negative, indicating a higher
sociodemographic domain score is associated with poor
environmental quality.

Built environment domain
Housing environments vary and features of the housing
environment have the potential to influence human
health and well-being. The housing environment was
represented using two variables available from the HUD
data source, low-rent and section-eight [43], which were
summed to result in the count of any low-rent or
section-eight housing in each county; the subsidized
housing rate was constructed from this count. The sub-
sidized housing rate was log-transformed.
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Highway safety was represented by a traffic fatality
variable. Rates for the count of fatal crashes per county
were constructed. This rate was log distributed (due to
many counties having zero fatal crashes) and was there-
fore log-transformed. The percent of county residents
who use public transportation was the only U.S. Census
[28] variable used in the built environment domain of
the EQI. For many counties, the percent of the popula-
tion who reports using public transportation is near 0,
and it was therefore log-transformed.
We were interested in characterizing the relative

proportions of each county that were served by high-
ways, secondary roads and primary roads. The propor-
tions of all roadways that were highways or primary
roads were included.
Business and service environments are important pre-

dictors of human health and activity. We sought to esti-
mate features of the economic and service environment
using data from Duns and Bradstreet [30]. Nine business
environment rate variables were constructed by dividing
the county-level count of a business type by the county-
level population count. All variables except the negative
food environment were log-transformed for normality.
The business and service environments contain a mix of
positive and negative features; therefore when the built
domain was constructed, positive variables were reverse-
coded to ensure that a higher amount of the these ser-
vice variables represent adverse environmental condi-
tions. The built domain’s valence is negative indicating a
higher built domain score represents poor environmen-
tal quality.

EQI temporal representation
When annual data were available, variable consistency
(mean and standard deviation) was compared across
each year of the six-years (2000–2005). Additionally,
proto-EQIs were constructed using data from one year
(2002) and from the average of all six-years. For those
variables that were spatially kriged, county-level values
before and after kriging were also compared. Because
these county-level values were temporally consistent, the
EQI was constructed based on county-level averages for
the six-year period for each variable in each domain.

RUCC stratification
Recognizing that environments differ across the rural–
urban continuum [44], we concluded the EQI would be
most useful if it accommodated rural–urban environ-
mental differences. Therefore, EQI construction was
stratified by rural–urban continuum codes (RUCC). The
RUCC is a nine-item categorization code of proximity
to/influence of major metropolitan areas [45]. As has
been done elsewhere, the nine-item categories were con-
densed into four categories for which RUCC1 represents

metropolitan urbanized = codes 1 + 2 + 3; RUCC2 non-
metro urbanized = 4 + 5; RUCC3 less urbanized = 6 + 7;
and RUCC4 thinly populated =8 + 9 [46-49]. Both strati-
fied county-specific and all-county indices were created.
Loadings on the stratified and non-stratified sets of indices
were assessed to determine loading heterogeneity across
counties. Because these loadings differed meaningfully by
RUCC level, we constructed a RUCC-stratified EQI for
each county.

Data reduction
Similar to the approach employed in other research
[10,50,51], principal components analysis (PCA) was
chosen for data reduction in this study because the inves-
tigators sought an empirical summary of total area-level
variance explained by the environmental variables, rather
than a confirmation of any underlying factor structure
comprised of the previously identified domains.
Because it was unclear which of the variables included

in the domain-specific PCAs were irrelevant to human
health, we retained all the variables for inclusion in the
RUCC-stratified and overall indices.

Component extraction and index construction
The constructed variables from each dataset were merged
to produce a domain-specific county-level dataset. The
domain-specific variables were then combined using PCA.
PCA produces variable loadings, which are roughly
equivalent to the “weight” or contribution that each vari-
able makes toward explaining the total variance. The load-
ing associated with each variable is then multiplied by its
mean value for the given geography (county, for the EQI)
and these weighted mean values are summed. Although it
is possible to form as many independent linear combina-
tions as there are variables, we retained only the first prin-
cipal component: the unique linear combination that
accounted for the largest possible proportion of the total
variability in the component measures. This process was
undertaken separately for each of the four RUCC strata.
The first principal component, which we labeled the

domain-specific index (e.g., air domain index), was stan-
dardized to have a mean of 0 and standard deviation (SD)
of 1 by dividing the index by the square of the eigenvalue
[52]. Each domain-specific index was then included in a
second PCA procedure (Figure 1), from which we ex-
tracted the first principal component to create the EQI.
Pearson’s product moment correlations were used to as-

sess relationships among the indices and between the indi-
ces and other county-level variables with a cut off of 0.7.

Results
Description of variables comprising EQI domains
The full listing and description of variables contained
in the EQI can be found in Additional file 2. Here we
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present exemplar variables from each domain to describe
the variables that represented common patterns of vari-
able loadings (e.g., monotonically increasing or decreasing
loadings from most urban to most rural, u-shaped loading
pattern from most urban to most rural, etc.). Means,
standard deviations, and ranges are included.
Variables included in the air domain generally show

moderate to high variability between rural–urban strata,
with higher averages in the most urban stratum decreas-
ing to the most rural stratum (Table 1). For example, CO
has mean values of 705, 598, 472, 343 ppm for each
stratum from most urban to most rural. This pattern
holds true for most of the hazardous air pollutants as well,
though some pollutants show higher means in the non-
metro urbanized or less-urbanized strata (e.g., chlorine, di-
methyl sulfate). PM10, PM2.5, and carbon tetrachloride are
relatively stable across rural–urban strata.
The variables included in the water domain also demon-

strate moderate variability across the rural–urban strata.
The metropolitan-urbanized and non-metro urbanized

strata both have higher overall impaired stream length
(14.00% and 14.20%, respectively) compared to the less-
urbanized and thinly populated strata (8.79% and 6.54%
respectively) (Table 2). The urban strata also demon-
strated a higher number of discharge permits per stream
length than the rural strata. The thinly-populated stratum
had the highest percentage of population on self-supplied
sources (35.61%) and the lowest percentage of population
on surface water sources (21.94%). While most chemical
contaminants demonstrated similar concentrations across
the rural–urban strata, there were a few differences. Fluor-
ide and Di(2-ethylhexyl)adipate (DEHA) were present in
higher concentrations on the metropolitan-urbanized
stratum. There was little variability across rural–urban
strata for atmospheric deposition of chemicals and per-
cent of land in extreme drought.
In the land domain, the metropolitan-urbanized coun-

ties have higher averages of soil contaminants, more facil-
ities, and lower agricultural-related variables (% harvested,
% irrigated) than non-metro urbanized, less-urban, and

Figure 1 Domain-specific and overall EQI construction - conceptually.
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Table 1 Overall and RUCC-stratified domain variable means, standard deviations, ranges for select variables in the air domain

Metropolitan - urbanized Non-metro
urbanized Less-urbanized Thinly populated Overall

(RUCC1 = 1089) (RUCC2 = 323) (RUCC 3 = 1059) (RUCC4 = 670) (n = 3141)

Variable (construct) Units Mean (sd) [range] Mean (sd) [range] Mean (sd) [range] Mean (sd) [range] Mean (sd) [range]

Nitrogen Dioxide
Ppb

7.95E + 02 (7.05E + 02) 4.97E + 02 (4.13E + 02) 4.21E + 02 (3.95E + 02) 3.53E + 02 (3.36E + 02) 5.44E + 02 (5.49E + 02)

(Criteria air pollutants) [1.01E + 00, 8.65E + 03] [1.29E + 00, 2.59E + 03] [1.00E + 00, 8.66E + 03] [1.00E + 00, 3.42E + 03] [1.00E + 00, 8.66E + 03]

PM10
μg/m3

14.199 (5.193) 11.258 (4.533) 9.852 (3.924) 8.446 (3.596) 11.204 (4.974)

(Criteria air pollutants) [1.777, 39.554] [2.370, 27.095] [1.000, 34.625] [1.011, 21.404] [1.000, 39.554]

PM2.5
μg/m3

10.621 (2.205) 9.586 (2.351) 9.379 (2.466) 8.265 (2.745) 9.593 (2.582)

(Criteria air pollutants) [3.443, 16.912] [2.162, 14.397] [1.029, 14.451] [1.138, 13.437] [1.029, 16.912]

Carbon disulfide
tons emitted

9.05E-03 (1.05E-01) 5.94E-03 (6.12E-02) 2.07E-03 (2.48E-02) 7.92E-04 (1.13E-02) 4.61E-03 (6.66E-02)

(Hazardous air pollutants) [5.50E-07, 2.30E + 00] [1.91E-06, 1.02E + 00] [1.34E-07, 5.66E-01] [5.88E-09, 2.62E-01] [5.88E-09, 2.30E + 00]

Carbon tetrachloride
tons emitted

0.497 (0.006) 0.497 (0.003) 0.497 (0.005) 0.496 (0.008) 0.497 (0.006)

(Hazardous air pollutants) [0.429, 0.558] [0.468, 0.511] [0.429, 0.568] [0.395, 0.509] [0.395, 0.568]

Cyanide compounds
tons emitted

3.88E-02 (5.55E-02) 0.028 (0.037) 1.29E-02 (3.04E-02) 4.05E-03 (5.00E-03) 2.16E-02 (4.16E-02)

(Hazardous air pollutants) [4.91E-04, 1.35E + 00] [0.003, 0.635] [1.15E-04, 9.50E-01] [3.08E-05, 6.45E-02] [3.08E-05, 1.35E + 00]

Diesel engine emissions
tons emitted

0.607 (0.516) 0.352 (0.188) 0.235 (0.129) 1.53E-01 (9.87E-02) 3.59E-01 (3.73E-01)

(Hazardous air pollutants) [0.034, 8.815] [0.035, 1.791] [0.001, 0.991] [1.59E-04, 5.42E-01] [1.59E-04, 8.82E + 00]

Lead compounds
tons emitted

2.23E-03 (3.84E-03) 1.43E-03 (1.65E-03) 9.34E-04 (2.21E-03) 6.01E-04 (1.48E-03) 1.36E-03 (2.82E-03)

(Hazardous air pollutants) [3.41E-04, 8.17E-02] [3.51E-04, 1.45E-02] [2.98E-04, 4.74E-02] [2.74E-04, 2.35E-02] [2.74E-04, 8.17E-02]

PAH/POM
tons emitted

1.62E-02 (3.00E-02) 0.014 (0.021) 7.66E-03 (1.58E-02) 3.20E-03 (7.15E-03) 1.03E-02 (2.19E-02)

(Hazardous air pollutants) [1.79E-04, 4.45E-01] [0.001, 0.139] [2.64E-05, 3.36E-01] [4.44E-05, 1.25E-01] [2.64E-05, 4.45E-01]

Polychlorinated biphenyls
tons emitted

1.71E-04 (4.16E-05) 1.84E-04 (3.62E-05) 1.69E-04 (2.06E-04) 1.43E-04 (6.60E-05) 1.66E-04 (1.27E-04)

(Hazardous air pollutants) [1.27E-04, 5.94E-04] [1.27E-04, 3.47E-04] [1.27E-04, 6.27E-03] [1.27E-04, 1.59E-03] [1.27E-04, 6.27E-03]

Vinyl chloride
tons emitted

1.10E-02 (1.09E-02) 6.93E-03 (3.54E-03) 1.33E-03 (3.75E-03) 1.60E-04 (1.09E-03) 4.99E-03 (8.36E-03)

(Hazardous air pollutants) [5.00E-06, 1.05E-01] [1.27E-06, 1.97E-02] [4.37E-09, 9.41E-02] [6.99E-10, 2.56E-02] [6.99E-10, 1.05E-01]

Complete list of variables is available in Additional file 2.
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Table 2 Overall and RUCC-stratified domain variable means, standard deviations, ranges for select variables in the water domain

Metropolitan - urbanized Non-metro urbanized Less-urbanized Thinly populated Overall

(RUCC1 = 1089) (RUCC2 = 323) (RUCC 3 = 1059) (RUCC4 = 670) (n = 3141)

Variable (construct) Units Mean (sd) [range] Mean (sd) [range] Mean (sd) [range] Mean (sd) [range] Mean (sd) [range]

Impaired stream length in county
percent

14.004 (16.528) 14.203 (20.403) 8.791 (12.682) 6.537 (9.470) 10.674 (14.853)

(Overall water quality) [0, 92.570] [0, 94.450] [0, 95.740] [0, 98.500] [0, 98.500]

Industrial Permits
permits/1000 km

51.139 (96.466) 27.241 (31.332) 18.423 (38.732) 10.080 (22.009) 28.893 (64.947)

(General water contamination) [0, 1195.680] [0, 280.860] [0, 674.150] [0, 337.300] [0, 1195.680]

Number of days of beach closure
days

3.229 (19.625) 1.421 (9.859) 0.143 (1.945) 0.022 (0.508) 1.318 (12.118)

(Recreational water quality) [0, 365.000] [0, 116.000] [0, 55.000] [0, 13.000] [0, 365.000]

Percent of Public Supply Population on Surface Water
percent

46.863 (41.736) 41.922 (41.306) 33.775 (40.841) 21.942 (36.526) 36.627 (41.386)

(Domestic use water quality) [0, 100.000] [0, 100.000] [0, 100.000] [0, 100.000] [0, 100.000]

Calcium (Ca) precipitation weighted mean
mg/L

0.192 (0.120) 0.217 (0.130) 0.255 (0.144) 0.279 (0.144) 0.231 (0.139)

(Atmospheric deposition) [0.040, 0.594] [0.043, 0.634] [0.042, 1.183] [0.047, 0.806] [0.040, 1.183]

Total Mercury (Hg) deposition
ng/M2

4.784 (1.249) 4.635 (1.364) 4.780 (1.397) 4.520 (1.405) 4.711 (1.350)

(Atmospheric deposition) [1.101, 9.219] [1.100, 7.950] [1.109, 8.473] [1.103, 8.458] [1.100, 9.219]

Percent of county drought – extreme (D3-D4)
percent

3.160 (5.273) 3.522 (6.215) 3.908 (6.931) 5.030 (8.577) 3.848 (6.777)

(Drought) [0, 46.900] [0, 42.430] [0, 40.400] [0, 48.800] [0, 48.800]

Alpha Particles
PCl/L

1.034 (2.333) 1.113 (1.851) 1.364 (3.517) 0.781 (2.053) 1.099 (2.711)

(Chemical contamination) [0, 35.800] [0, 11.390] [0, 51.450] [0, 18.100] [0, 51.450]

Selenium
mg/L

3.13E-03 (4.73E-03) 2.93E-03 (3.65E-03) 3.00E-03 (5.12E-03) 2.25E-03 (4.45E-03) 4.72E-03 (2.88E-03)

(Chemical contamination) [0, 5.00E-02] [0, 3.00E-02] [0, 9.40E-02] [0, 4.70E-02] [0, 9.40E-02]

Silvex
ug/L

0.384 (1.020) 0.579 (1.836) 0.384 (1.087) 0.184 (0.633) 0.362 (1.096)

(Chemical contamination) [0, 5.000] [0, 25.250] [0, 12.500] [0, 5.000] [0, 25.250]

Chlordane
ug/L

0.088 (0.100) 0.099 (0.096) 0.090 (0.097) 0.068 (0.094) 0.086 (0.098)

(Chemical contamination) [0, 0.950] [0, 0.273] [0, 0.267] [0, 0.200] [0, 0.950]

Tetrachloroethylene
ug/L

0.460 (0.584) 0.397 (0.376) 0.407 (0.771) 0.325 (0.300) 0.407 (0.595)

(Chemical contamination) [0, 8.000] [0, 5.110] [0, 23.750] [0, 4.330] [0, 23.750]

1,2-Dichloropropane
ug/L

0.360 (0.232) 0.364 (0.243) 0.368 (0.217) 0.313 (0.240) 0.353 (0.231)

(Chemical contamination) [0, 1.270] [0, 1.900] [0, 0.560] [0, 0.620] [0, 1.900]

Complete list of variables is available in Additional file 2.
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thinly-populated counties (Table 3). Pesticides and animal
units show no clear pattern in variation across the strata.
For example, average pounds of fungicides applied are
1820, 4030, 2740, and 2140 for most urban to most rural
strata, respectively. There is little variation in the distribu-
tion of radon zones or agricultural chemicals applied
across rural–urban strata.
Socioeconomic variables included in the sociodemo-

graphic domain indicate that rural counties are generally
more deprived than more urban counties (Table 4), hav-
ing the lowest household income ($30,350) and highest
percent of persons in poverty (16.1%). From the crime
perspective, however, rural areas are at an advantage
compared to more urban areas; the mean violent crime
rate for rural counties was 352.5 compared with 390.9
for the most urban and 398.1 for the non-metropolitan
urbanized counties.
Contributing to the built environment domain (Table 5),

the most rural counties have the smallest proportion of
highways and significantly higher rate of traffic fatalities
compared with more urban areas. Urban counties had
fewer education-related businesses, positive food establish-
ments, recreation-related resources and subsidized hous-
ing units per person compared with more rural counties.

Variable loadings on EQI domains
Variable loadings are a function of the county-level
prevalence of a variable and its association with the
other variables contributing to the total county-level
variability for a given domain. The full listing variable
loadings across RUCC strata and on the overall EQI can
be found in Additional file 3. Here we present exemplar
variables from each domain to describe the variables that
represented common patterns of variable loadings (e.g.,
monotonically increasing or decreasing loadings from
most urban to most rural; u-shaped loading pattern from
most urban to most rural, etc.).
The loadings for the variables that comprise the air

domain varied by RUCC strata, though not extensively
(Table 6). Direction of loadings were similar across
rural–urban strata. Criteria air pollutants were less influ-
ential in the metropolitan-urban stratum compared to
the other strata, while influence of hazardous air pollut-
ants varied. The first principal component explained
47% of the total air variability and the domain was ap-
proximately normally distributed.
The loadings for the variables that comprise the water

domain varied by RUCC and also by construct, suggest-
ing that some constructs were more influential in urban
areas and others in rural areas (Table 7). Variables repre-
senting overall water quality loaded positively in the two
urban RUCC and negatively in the rural RUCC strata.
The loadings for variables representing general water
contamination and recreational water quality varied by

RUCC though they were overall quite low. Loadings for
variables representing domestic water quality and
drought varied by RUCC, though they were all positive.
The loadings for variables representing the atmospheric
deposition construct varied by RUCC and did not dem-
onstrate any clear patterns. Variables in the chemical
contamination construct demonstrated little variability
by RUCC with loadings of similar values for all variables
across all RUCC. The first principal component ex-
plained 46% of the total variability for the water vari-
ables, and while each of the variables contributing to the
water domain were normally distributed, the water do-
main itself was not. This may have resulted from so
many regions of the U.S. lacking water quality informa-
tion; there was considerable data for some counties and
almost no data for others. In light of its non-normal dis-
tribution, the water domain itself and its contribution to
the overall EQI should be interpreted with caution.
The loadings for variables in the land domain varied

considerably (Table 8). For mercury, lead, titanium, and
aluminum, loading magnitudes were much lower in
the most urban stratum, while the loadings across all
other strata were comparable. Some variables had the
highest loading in the most-urban and most-rural strata
(e.g., herbicides), while others remained stable across
strata (e.g., arsenic, iron, harvested acreage). Direction
of loadings was consistent across strata and the first
principal component accounted for 32% of the total
variability. This domain was approximately normally
distributed with just a few counties having significantly
lower land-domain values. These outlying counties were
retained, however, to enable the EQI’s construction for all
U.S. counties.
The loadings for the variables that comprise the socio-

demographic domain also varied by RUCC code (Table 9),
indicating some variables were more influential in urban
settings while others exerted more of an effect on the do-
main score in rural counties. The patterns of association
within the socioeconomic construct were fairly consistent,
however, meaning the variables that loaded negatively
in the urban counties also loaded negatively in the least
urban counties. For instance, renter occupation and
vacant units were negatively associated with median
household value and median household income across
rural–urban status. The one socioeconomic variable
for which this was not the case was for the percentage
of persons who worked outside the county; for this
variable, working outside the county in less urbanized
and thinly populated was inversely associated with
more than a high school education, but was positively as-
sociated in metropolitan urbanized and non-metropolitan
urbanized counties. The first principal component
accounted for 32% of all county-level variability and was
normally distributed.
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Table 3 Overall and RUCC-stratified domain variable means, standard deviations, ranges for select variables in the land domain

Metropolitan - urbanized Non-metro urbanized Less-urbanized Thinly populated Overall

(RUCC1 = 1089) (RUCC2 = 323) (RUCC 3 = 1059) (RUCC4 = 670) (n = 3141)

Variable (construct) Units Mean (sd) [range] Mean (sd) [range] Mean (sd) [range] Mean (sd) [range] Mean (sd) [range]

Harvested acreage
acres harvested per county acres

0.183 (0.208) 0.240 (0.244) 0.240 (0.253) 0.201 (0.218) 0.212 (0.231)

(Agriculture) [0, 0.920] [0, 0.895] [0, 1.221] [0, 0.946] [0, 1.221]

Animal units
animal units per county acres

0.151 (0.727) 0.079 (0.116) 0.174 (1.639) 0.103 (0.143) 0.141 (1.047)

(Agriculture) [0, 20.984] [0, 1.235] [0, 46.941] [0, 1.481] [0, 46.941]

Herbicides
pounds applied

6.85E + 04 (1.28E + 05) 1.08E + 05 (1.66E + 05) 9.56E + 04 (1.52E + 05) 6.81E + 04 (1.08E + 05) 8.16E + 04 (1.38E + 05)

(Pesticides) [0, 1.18E + 06] [0, 1.08E + 06] [0, 1.15E + 06] [0, 7.16E + 05] [0, 1.18E + 06]

Insecticides
pounds applied

3.69E + 03 (8.89E + 03) 6.14E + 03 (1.36E + 04) 5.11E + 03 (1.05E + 04) 2.75E + 03 (5.33E + 03) 4.22E + 03 (9.52E + 03)

(Pesticides) [0, 1.72E + 05] [0, 1.89E + 05] [0, 1.53E + 05] [0, 4.87E + 04] [0, 1.89E + 05]

Arsenic
ppm

6.530 (5.445) 6.850 (8.171) 6.435 (5.139) 6.342 (4.304) 6.491 (5.476)

(Contaminants) [0, 91.333] [0, 131.369] [0, 98.893] [0, 43.595] [0, 131.369]

Lead
ppm

29.901 (45.950) 22.049 (17.221) 21.219 (24.976) 22.812 (51.740) 24.654 (39.465)

(Contaminants) [0, 1007.300] [0, 196.867] [0, 691.838] [0, 1123.110] [0, 1123.110]

Titanium
% weight

0.404 (0.228) 0.369 (0.185) 0.327 (0.165) 0.318 (0.185) 0.356 (0.198)

(Contaminants) [0, 2.118] [0, 1.405] [0, 2.109] [0, 1.941] [0, 2.118]

Iron
% weight

2.531 (1.480) 2.372 (1.282) 2.152 (1.186) 2.154 (1.054) 2.307 (1.292)

(Contaminants) [0, 13.731] [0, 8.440] [0, 9.461] [0, 7.165] [0, 13.731]

Phosphorus
% weight

0.067 (0.139) 0.056 (0.095) 0.051 (0.059) 0.053 (0.040) 0.057 (0.096)

(Contaminants) [0, 2.203] [0, 1.296] [0, 1.025] [0, 0.509] [0, 2.203]

Facilities
facilities per county pop

3.94E-04 (2.77E-04) 4.95E-04 (3.08E-04) 5.59E-04 (4.60E-04) 7.77E-04 (2.33E-03) 5.42E-04 (1.13E-03)

(facilities) [0, 2.30E-03] [4.23E-05, 2.19E-03] [0, 7.55E-03] [0, 5.42E-02] [0, 5.42E-02]

Radon zone
radon zone

2.010 (0.815) 2.000 (0.856) 2.022 (0.834) 1.849 (0.809) 1.979 (0.827)

(Radon) [0, 3.000] [0, 3.000] [0, 3.000] [0, 3.000] [0, 3.000]

Complete list of variables is available in Additional file 2.
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Table 4 Overall and RUCC-stratified domain variable means, standard deviations, ranges for select variables in the sociodemographic domain

Metropolitan - urbanized Non-metro urbanized Less-urbanized Thinly populated Overall

(RUCC1 = 1089) (RUCC2 = 323) (RUCC 3 = 1059) (RUCC4 = 670) (n = 3141)

Variable (construct) Units Mean (sd) [range] Mean (sd) [range] Mean (sd) [range] Mean (sd) [range] Mean (sd) [range]

Renter occupied (Socioeconomic status (SES)) percent
27.734 (9.557) 29.307 (6.499) 25.338 (5.588) 22.947 (6.814) 26.067 (7.791)

[10.561, 80.458] [13.562, 52.731] [13.545, 72.205] [10.464, 100] [10.464, 100]

Vacant units (SES) percent
9.146 (5.810) 12.026 (7.190) 15.324 (8.392) 21.980 (11.880) 14.263 (9.668)

[1.539, 53.707] [3.457, 58.416] [4.336, 62.316] [4.183, 77.014] [1.539, 77.014]

Median household value (SES) dollar value
1.10E + 05 (5.51E + 04) 8.86E + 04 (3.48E + 04) 7.25E + 04 (3.90E + 04) 6.09E + 04 (3.06E + 04) 8.46E + 04 (4.77E + 04)

[3.46E + 04, 1.00E + 06] [3.78E + 04, 3.69E + 05] [2.26E + 04, 7.50E + 05] [0, 3.58E + 05] [0, 1.00E + 06]

Median household income (SES) dollar value
4.17E + 04 (9.84E + 03) 3.53E + 04 (6.39E + 03) 3.21E + 04 (6.03E + 03) 3.03E + 04 (5.59E + 03) 3.54E + 04 (8.92E + 03)

[1.98E + 04, 8.29E + 04] [1.65E + 04, 6.27E + 04] [1.63E + 04, 7.90E + 04] [9.33E + 03, 5.37E + 04] [9.33E + 03, 8.29E + 04]

Persons < poverty level (SES) percent
11.567 (5.307) 14.187 (6.275) 15.601 (6.565) 16.147 (7.107) 14.173 (6.554)

[2.100, 35.900] [4.500, 50.900] [2.900, 52.300] [0, 56.900] [0, 56.900]

No English (SES) percent
9.490 (10.534) 9.257 (12.094) 8.451 (12.103) 6.791 (9.492) 8.540 (11.092)

[1.000, 91.900] [1.900, 92.100] [0.700, 84.800] [0.400, 85.400] [0.400, 92.100]

Earning > high school education (SES) percent
80.181 (7.546) 78.708 (7.814) 74.877 (8.813) 76.139 (9.478) 77.379 (8.755)

[50.500, 97.000] [34.700, 93.800] [43.400, 96.300] [39.500, 94.400] [34.700, 97.000]

Unemployed (SES) percent
5.293 (2.301) 6.433 (2.468) 6.298 (2.757) 5.631 (3.745) 5.821 (2.868)

[1.700, 41.700] [2.500, 20.900] [1.400, 33.000] [0, 41.400] [0, 41.700]

Work outside county (SES) percent
40.137 (20.673) 21.479 (12.061) 28.042 (13.447) 32.952 (16.543) 32.608 (17.936)

[1.100, 90.800] [1.300, 60.800] [0.600, 77.200] [0, 76.400] [0, 90.800]

Median number rooms per house (SES) count
5.522 (0.459) 5.372 (0.345) 5.361 (0.360) 5.368 (0.485) 5.420 (0.430)

[3.100, 7.300] [4.000, 6.600] [3.300, 6.400] [2.000, 6.500] [2.000, 7.300]

Housing with > 10 units (SES) percent
6.856 (7.239) 4.845 (3.542) 2.689 (2.717) 1.475 (2.146) 4.096 (5.268)

[0, 90.100] [0.600, 35.100] [0, 42.100] [0, 31.400] [0, 90.100]

Mean number of violent crimes per capita (Crime)
rate

390.884 (322.135) 397.099 (374.610) 366.303 (233.612) 352.528 (158.067) 375.054 (272.635)

[0, 2481.800] [0, 1955.500] [0, 1897.300] [0, 783.402] [0, 2481.800]

Complete list of variables is available in Additional file 2.
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Table 5 Overall and RUCC-stratified domain variable means, standard deviations, ranges for select variables in the built environment domain

Metropolitan - urbanized Non-metro urbanized Less-urbanized Thinly populated Overall

(RUCC1 = 1089) (RUCC2 = 323) (RUCC 3 = 1059) (RUCC4 = 670) (n = 3141)

Variable (construct) Units Mean (sd) [range] Mean (sd) [range] Mean (sd) [range] Mean (sd) [range] Mean (sd) [range]

Roads that are highways mile proportion 0.045 (0.026) 0.045 (0.025) 0.039 (0.029) 0.029 (0.031) 0.039 (0.029)

(Road system) [0, 0.156] [0, 0.158] [0, 0.210] [0, 0.291] [0, 0.291]

Roads that are primary streets mile proportion 0.171 (0.059) 0.148 (0.067) 0.136 (0.063) 0.119 (0.063) 0.146 (0.065)

(Road system) [0.009, 0.536] [0.015, 0.438] [0, 0.406] [0, 0.371] [0, 0.536]

Traffic fatality rate fatalities per co. pop 4.72E-04 (3.92E-04) 5.14E-04 (2.63E-04) 6.94E-04 (5.48E-04) 9.45E-04 (1.33E-03) 6.52E-04 (7.57E-04)

(Road safety) [0, 5.04E-03] [0, 1.60E-03] [0, 6.29E-03] [0, 1.10E-02] [0, 1.10E-02]

Population using public transport
percent

1.699 (4.542) 0.714 (1.033) 0.447 (0.780) 0.393 (0.603) 0.897 (2.809)

(Public transit behavior) [0, 59.600] [0, 8.800] [0, 10.600] [0, 6.900] [0, 59.600]

Vice-related
count per county population

3.56E-04 (2.10E-04) 4.48E-04 (2.29E-04) 4.71E-04 (3.32E-04) 7.25E-04 (6.56E-04) 4.76E-04 (3.98E-04)

(Business environment) [1.66E-05, 1.96E-03] [3.05E-05, 1.39E-03] [2.47E-05, 2.06E-03] [3.71E-05, 4.66E-03] [1.66E-05, 4.66E-03]

Entertainment-related
count per county population

4.06E-04 (2.40E-04) 4.43E-04 (2.26E-04) 3.99E-04 (2.98E-04) 5.24E-04 (6.01E-04) 4.28E-04 (3.51E-04)

(Business environment) [3.80E-05, 2.51E-03] [6.72E-05, 1.63E-03] [2.82E-05, 2.97E-03] [5.15E-05, 6.80E-03] [2.82E-05, 6.80E-03]

Education-related
count per county population

5.80E-04 (3.19E-04) 6.09E-04 (3.98E-04) 6.11E-04 (4.37E-04) 6.06E-04 (4.50E-04) 5.99E-04 (3.97E-04)

(Business environment) [7.30E-05, 3.25E-03] [1.01E-04, 3.33E-03] [4.73E-05, 3.92E-03] [6.10E-05, 3.26E-03] [4.73E-05, 3.92E-03]

Negative food related
count per county population

7.67E-04 (2.15E-04) 8.67E-04 (2.12E-04) 8.85E-04 (2.89E-04) 8.27E-04 (5.03E-04) 8.30E-04 (3.20E-04)

(Business environment) [9.44E-05, 2.26E-03] [2.01E-04, 1.82E-03] [1.35E-04, 2.82E-03] [6.18E-05, 5.38E-03] [6.18E-05, 5.38E-03]

Positive food related
count per county population

1.70E-03 (5.98E-04) 1.84E-03 (4.70E-04) 1.85E-03 (6.51E-04) 1.98E-03 (1.11E-03) 1.82E-03 (7.50E-04)

(Business environment) [3.88E-04, 1.04E-02] [6.28E-04, 4.63E-03] [3.82E-04, 7.87E-03] [1.92E-04, 1.49E-02] [1.92E-04, 1.49E-02]

Health care related
count per county population

2.69E-03 (1.39E-03) 2.96E-03 (8.53E-04) 2.56E-03 (9.80E-04) 2.15E-03 (1.03E-03) 2.56E-03 (1.16E-03)

(Business environment) [1.94E-04, 2.47E-02] [7.79E-04, 8.89E-03] [1.42E-04, 1.13E-02] [1.42E-04, 7.66E-03] [1.42E-04, 2.47E-02]

Recreation related
count per county population

2.49E-04 (1.24E-04) 3.11E-04 (1.47E-04) 3.32E-04 (2.41E-04) 5.13E-04 (6.47E-04) 3.30E-04 (3.29E-04)

(Business environment) [3.38E-05, 1.16E-03] [2.91E-05, 1.13E-03] [3.03E-05, 2.00E-03] [5.57E-05, 1.08E-02] [2.91E-05, 1.08E-02]

Social service related
count per county population

8.64E-05 (5.72E-05) 9.18E-05 (5.12E-05) 1.17E-04 (8.79E-05) 2.03E-04 (1.54E-04) 1.10E-04 (9.03E-05)

(Business environment) [9.77E-06, 7.06E-04] [6.79E-06, 2.76E-04] [1.44E-05, 8.37E-04] [2.97E-05, 1.06E-03] [6.79E-06, 1.06E-03]

Total subsidized units
count per county population

1.11E-02 (2.91E-02) 1.27E-02 (1.82E-02) 0.010 (0.019) 0.009 (0.042) 1.03E-02 (2.86E-02)

(Subsidized housing environment) [0, 6.46E-01] [0, 1.77E-01] [0, 0.416] [0, 0.834] [0, 8.34E-01]

Complete list of variables is available in Additional file 2.
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Table 6 Overall and RUCC-stratified loadings for select variables in the air domain

Constructs indented Metropolitan - urbanized Non-metro urbanized Less-urbanized Thinly populated Overall

(RUCC1 = 1089) (RUCC2 = 323) (RUCC 3 = 1059) (RUCC4 = 670) (n = 3141)

Air Domain

Criteria air pollutants

Nitrogen Dioxide 0.0613 0.1091 0.1014 0.0911 0.0848

PM10 0.0845 0.0677 0.0627 0.0937 0.0897

PM2.5 0.0701 0.1513 0.1281 0.1354 0.1036

Hazardous air pollutants

Carbon disulfide 0.1169 0.1140 0.1172 0.1261 0.1242

Carbon tetrachloride 0.0259 0.0281 0.0186 −0.0028 0.018

Cyanide compounds 0.1655 0.1674 0.1680 0.1497 0.1477

Diesel engine emissions 0.1545 0.1441 0.1431 0.1163 0.1321

Dimethyl sulfate 0.0472 0.1201 0.1024 0.1072 0.0942

Lead compounds 0.1366 0.0778 0.069 0.0581 0.1045

PAH/POM 0.1143 0.0822 0.1172 0.1192 0.1199

Polychlorinated biphenyls 0.0284 0.1300 0.0954 0.0779 0.0729

Vinyl chloride 0.1489 0.0997 0.1008 0.097 0.1257

Complete list of variable loadings is available in Additional file 3.

Table 7 Overall and RUCC-stratified loadings for select variables in the water domain

Constructs indented Metropolitan - urbanized Non-metro urbanized Less-urbanized Thinly populated Overall

(RUCC1 = 1089) (RUCC2 = 323) (RUCC 3 = 1059) (RUCC4 = 670) (n = 3141)

Water Domain

Overall water quality

% of stream length impaired in county 0.0078 0.0063 −0.0067 −0.0172 0.0031

General water contamination

Industrial permits −0.0214 −0.0394 −0.0078 0.0084 −0.0114

Recreational water quality

# of days of beach closure −0.0019 −0.0072 0.0085 0.0092 0

Domestic use water quality

% Population which is on surface water supply 0.0190 0.0175 0.0098 0.0346 0.0220

Atmospheric deposition

Calcium (Ca) precipitation weighted mean 0.0325 0.0179 0.0231 −0.0055 0.0154

Total Mercury (Hg) deposition −0.0413 −0.0359 −0.0293 0.0072 −0.0228

Drought

% of county drought – extreme (D3-D4) 0.0035 0.0337 0.0234 0.0242 0.0164

Chemical contamination

Selenium 0.1123 0.1196 0.1044 0.1071 0.1103

Silvex 0.1217 0.1209 0.1204 0.1270 0.1226

Chlordane 0.1314 0.1344 0.1343 0.1346 0.1336

1,2-Dichloropropane 0.1451 0.1452 0.1512 0.1461 0.1473

Alpha Particles 0.0620 0.0794 0.0703 0.0704 0.0691

Complete list of variable loadings is available in Additional file 3.
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The variables that comprised the built environment
domain loaded much less consistently across the rural–
urban categories (Table 10). In general, there were more
inverse or negative variable loadings in the most urban
counties compared with the less urban counties, and the

most rural counties had fairly consistent positive variable
loadings. Given this variability, the first principal compo-
nent accounted for only 23% of the total county-level
variability in the built environment, but was also nor-
mally distributed.

Table 8 Overall and RUCC-stratified loadings for select variables in the land domain

Constructs
indented

Metropolitan - urbanized Non-metro urbanized Less-urbanized Thinly populated Overall

(RUCC1 = 1089) (RUCC2 = 323) (RUCC 3 = 1059) (RUCC4 = 670) (n = 3141)

Land Domain

Agriculture

Harvested acreage 0.1572 0.1395 0.1398 0.1373 0.1400

Animal units −0.0358 −0.0133 0.0019 0.0202 −0.0034

Pesticides

Herbicides 0.1701 0.1393 0.1350 0.1762 0.1524

Insecticides 0.1407 0.1049 0.0874 0.1047 0.1072

Contaminants

Arsenic 0.2617 0.2774 0.2722 0.2626 0.2685

Lead 0.1731 0.2300 0.2395 0.2386 0.2228

Titanium 0.1012 0.1965 0.1701 0.2020 0.1682

Iron 0.3099 0.3218 0.3139 0.2948 0.3144

Phosphorus 0.1011 0.0858 0.1428 0.1775 0.1053

Facilities

Facilities 0.1169 0.1164 0.0604 0.0732 0.0779

Radon

Radon zone −0.1703 −0.1877 −0.1909 −0.1606 −0.1753

Complete list of variable loadings is available in Additional file 3.

Table 9 Overall and RUCC-stratified loadings for select variables in the sociodemographic domain

Constructs indented Metropolitan - urbanized Non-metro urbanized Less-urbanized Thinly populated Overall

(RUCC1 = 1089) (RUCC2 = 323) (RUCC 3 = 1059) (RUCC4 = 670) (n = 3141)

Sociodemographic domain

Socioeconomic

% renter occupied 0.2344 −0.1665 −0.0246 −0.1235 −0.0374

% vacant units 0.1757 −0.0586 −0.0209 0.0142 −0.1968

Median hh value −0.1762 0.2484 0.2604 0.2160 0.2907

Median hh income −0.4096 0.4190 0.4399 0.4545 0.4490

% persons < poverty 0.4535 −0.4568 −0.4728 −0.5169 −0.4557

% no English 0.1562 −0.2656 −0.1923 −0.1847 −0.1252

% earning > high school −0.3328 0.3673 0.4345 0.4559 0.3925

% unemployed 0.3718 −0.4053 −0.3429 −0.3322 −0.3250

% work outside county −0.1967 0.1228 −0.0892 −0.0663 0.0996

Median number rooms −0.4091 0.3314 0.3077 0.2878 0.3501

% > housing 10 units 0.0205 0.1325 0.2289 0.0733 0.2017

Crime

Log violent crime 0.1728 −0.1039 −0.1251 −0.1385 −0.1325

Complete list of variable loadings is available in Additional file 3.
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Domain-specific index description for overall EQI
The means, standard deviations, and ranges for each
domain-specific index are presented in Table 11. In gen-
eral, higher values of the air and sociodemographic indi-
ces were found in the more metropolitan areas and the
most thinly populated areas have the lowest values of
each of the indices. Mean values for the land domain
index did not vary substantially by RUCC strata and
mean values for the built environment indices were
below zero, or in the direction of better built environ-
ment quality.
Correlations among the domain specific indices were

modest (Table 12), ranging from 0.08 (air and water do-
main) to 0.40 (air and built domain). The correlations
between the overall EQI and each of the domain specific
indices reflected the relative importance of that domain
to overall environmental variability, and ranged from
0.75 (overall EQI and the sociodemographic domain) to
0.37 (overall EQI and the water domain).

Domain-specific loadings on overall EQI
The first principal component accounted for 39% of the
total county-level non-residential ambient environmental
variability. The pattern of association for the domain-
specific loadings differed by rural–urban status (Table 13).

As constructed, the index loadings on the overall EQI
index are mean (0) and standard deviation (1); the index is
normally distributed with a very slight left skew. In the
most urban areas, RUCC 1, the built environment domain
was most influential as indicated by its highest loading
value (0.52) followed by the air domain (0.51). For the
non-metropolitan urbanized areas (RUCC 2), the sociode-
mographic and land domains loaded similarly on the over-
all EQI (0.60 and 0.55, respectively), followed by the built
environment domain. For this particular grouping of
counties, the water domain was least influential, based on
its low PCA coefficient (0.30). The air domain was the
least influential for the less-urbanized counties ((RUCC 3)
0.16), followed by the water domain (0.30). In the most
thinly populated counties, the air and water domain were
characterized by the lowest loadings (0.03 and 0.13, re-
spectively) while the sociodemographic and land domains
were the most influential (loadings of 0.63 and 0.58,
respectively).

Description of EQI
The distribution of the RUCC-stratified EQI scores is
displayed in Figure 2. For these scores, higher values
tend toward poorer environments while negative values
are associated with more positive domain attributes. By

Table 10 Overall and RUCC-stratified loadings for select variables in the built environment domain

Constructs indented Metropolitan - urbanized Non-metro urbanized Less-urbanized Thinly populated Overall

(RUCC1 = 1089) (RUCC2 = 323) (RUCC 3 = 1059) (RUCC4 = 670) (n = 3141)

Built environment domain

Roads

Highway proportion 0.1249 −0.0209 0.1275 −0.0106 0.1320

Primary streets proportion 0.0857 −0.0744 −0.1143 −0.1103 0.0578

Highway/road safety

Log traffic fatalities −0.1507 −0.1938 0.0097 0.0272 0.0018

Public transit behavior

Proportion using public transport 0.2794 0.0635 −0.0212 0.074 0.2058

Business environment

Log vice-related environment 0.2547 0.2157 0.321 0.3536 0.2687

Log entertainment environment 0.3470 0.4422 0.3822 0.3721 0.3585

Log education environment 0.2405 0.2355 0.2866 0.3713 0.3242

Log negative food environment 0.2147 0.2372 0.2536 0.2514 0.2162

Log positive food environment 0.3666 0.4004 0.4241 0.3127 0.2995

Log health care environment 0.4245 0.4497 0.4653 0.4055 0.4241

Log recreation environment 0.2120 0.3901 0.3309 0.3434 0.2888

Log transportation environment 0.2998 0.1979 0.1985 0.2752 0.3207

Log civic environment 0.2865 0.2114 0.1692 0.2209 0.2912

Subsidized housing environment

Log total subsidized units −0.2448 0.0518 0.1440 0.2024 0.2566

Complete list of variable loadings is available in Additional file 3.
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virtue of their standardization, just under half of the EQI
score across all RUCC strata were at the negative end of
the distribution. The metropolitan urbanized (RUCC 1)
and non-metropolitan urbanized (RUCC 2) counties had
approximately the same heterogeneity of EQI score
(−4.39, 2.53 and −4.74, 2.20, respectively). The less-
urbanized counties (RUCC 3) demonstrated the greatest
heterogeneity and range of EQI scores (−4.76, 3.57)
while the thinly populated strata (RUCC 4) contained

counties with the most positive environments (EQI score
ranges from −5.86, 2.52).

Correlations with other sociodemographic features
Environmental quality is only modestly associated with
age, sex and racial sociodemographic characteristics in
the United States (Table 14). The lowest positive correla-
tions are between the percent under five years of age
and high values on the EQI in both the overall and in
the most urban counties (0.05 and 0.02, respectively).
The highest correlations, 0.60 and 0.54, were for the re-
lationship between percent white non-Hispanic and EQI
values in the non-metro and less urban counties.

Discussion
We developed an Environmental Quality Index for all
counties in the United States incorporating data for five
environmental domains: air, water, land, built, and socio-
demographic. For each environmental domain, variables
were constructed to represent exposures within that do-
main; indices for each domain and for environmental
quality as a whole were developed by stratifying by
rural–urban continuum codes. Variable loadings varied

Table 11 RUCC-stratified description (mean, standard deviation, range) of domain-specific indices used in overall EQI
construction for 3141 counties (2000–2005)

Metropolitan urbanized areas; RUCC 1 (n = 1089) Mean Standard deviation Minimum Maximum

Air domain index 0.756 0.662 −1.780 2.790

Water domain index 0.052 1.019 −1.641 1.478

Land domain index 0.089 0.909 −5.136 2.095

Sociodemographic domain index 0.594 0.955 −3.027 3.979

Built environment domain index −0.213 0.878 −4.109 3.884

Non-metropolitan urbanized areas; RUCC 2 (n = 323) Mean Standard deviation Minimum Maximum

Air domain index 0.484 0.474 −1.553 1.517

Water domain index 0.111 1.033 −1.570 1.306

Land domain index 0.089 0.909 −5.019 1.479

Sociodemographic domain index 0.023 0.858 −4.810 2.165

Built environment domain index −0.563 0.485 −1.043 2.165

Less-urbanized areas; RUCC 3 (n = 1059) Mean Standard deviation Minimum Maximum

Air domain index −0.199 0.654 −2.731 1.204

Water domain index 0.066 0.955 −1.565 1.301

Land domain index −0.069 1.007 −5.139 1.408

Sociodemographic domain index −0.316 0.854 −4.620 3.127

Built environment domain index −0.096 0.792 −6.086 3.127

Thinly populated areas; RUCC 4 (n = 670) Mean Standard deviation Minimum Maximum

Air domain index −1.1141 0.879 −3.258 0.7300

Water domain index −0.241 0.987 −1.555 1.732

Land domain index −0.072 1.122 −5.210 1.732

Sociodemographic domain index −0.477 0.860 −4.332 1.263

Built environment domain index −0.770 1.225 −5.530 2.787

Table 12 Pearson correlation coefficients for aim, water,
land, sociodemographic, built domains and overall EQI
for 3141 U.S. counties (2000–2005)

Air
domain

Water
domain

Land
domain

SD
domain

Built
domain

Overall
EQI

Air domain 1.0

Water domain 0.08 1.0

Land domain 0.09 0.18 1.0

SD domain 0.38 0.11 0.34 1.0

Built domain 0.40 0.16 0.19 0.32 1.0

Overall EQI 0.68 0.37 0.54 0.75 0.71 1.0
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by domain and rural–urban designation, suggesting that
environmental quality is driven by different domains in
rural and urban areas. By virtue of the standardization
used to construct the indices, approximately equal num-
bers of counties were at the positive end of the environ-
mental quality spectrum as were at the negative end of
the environmental quality spectrum.
The EQI is not the only index available for environ-

mental estimation. The Environmental Performance
Index (EPI), produced by a team at Yale University, is a
country-level index that uses 22 performance indicators
for which countries can be held accountable for environ-
mental sustainability [53]. Both the EQI and the EPI rely
on similar data sources (official statistics, monitoring
data, modeled data, spatial data), prepare data similarly
for variable construction (e.g., use of population denomi-
nators to construct standardized weights), and employ
weighting and aggregation in construction. These simi-
larities support the approach undertaken to construct

the EQI. The EPI differs from the EQI in important
ways, however. The EPI includes a substantially different
set of environmental domains than the EQI, focusing on
water effects (human and ecological health), air effects
(human and ecological health), biodiversity and habitat,
forests, fisheries, agriculture, climate change and energy.
It is also constructed using target-based indicators for
assessing performance on environmental health indica-
tors rather than being purely an environmental repre-
sentation. Finally, the EPI is aggregated at the country
level to accommodate its international scope, while the
EQI, though solely for the United States, gets at much
finer detail at the county level.
Another index for natural environment vulnerability

was developed by the South Pacific Applied Geoscience
commission, the United Nations Environment
Programme and their partners. The Environmental Vul-
nerability Index (EVI) [54] was developed through col-
laboration with countries, institutions, and experts
across the globe and was designed for use with other
economic and social vulnerability indices to provide in-
sights into the processes that can negatively influence
the sustainable development of countries. The EVI is
based on 50 indicators for estimating country-level en-
vironmental vulnerability. Unlike the EQI, it is con-
structed by averaging the various measures. One
limitation of the EVI is that it does not reflect environ-
ments dominated by human systems (e.g., cities, farms).
Most other environmental quality indices focus on one

environmental domain (e.g., Air Quality Index [55]) or a
specific type of activity (e.g., Pedestrian Environmental
Quality Index [56]) or vulnerability (e.g., Cumulative En-
vironmental Vulnerability Assessment [57], heat vulner-
ability index [58]). State-specific indices also exist, (e.g.,
CalEnviro Screen 1.0 [59], Virginia Environmental Qual-
ity Index [60] and Michigan Environmental Quality
Index [61]) but their comparability across states is lim-
ited by their respective data sources and construction. A
major strength of the EQI is that it encompasses mul-
tiple environmental domains, and all U.S. states and
counties.
The EQI holds substantial promise for improving en-

vironmental estimation for public health. One important
limitation of prior environmental health work has been
the inability to control for the multiple environments to
which people are simultaneously exposed. If these mul-
tiple human activity spaces occur within the same
county, using the EQI will provide an estimate of the
non-residential ambient county-level conditions to
which residents are exposed, whether they are at home,
at school, or at work. In addition to the EQI, each of the
domain-specific indices is informative. The domain-
specific loadings on the EQI indicate which of the envir-
onmental domains accounts for the largest portion of

Table 13 RUCC-stratified domain-specific loadings and
95% confidence intervals (95% CI) on overall EQI for
3141 EQI counties (2000–2005)

Metropolitan urbanized areas;
RUCC 1 (n = 1089

Coefficient 95% CI

Air domain index 0.5063 0.4379, 0.5747

Water domain index 0.2757 0.1828, 0.3686

Land domain index 0.4379 0.36552, 0.5107

Sociodemographic domain index 0.4538 0.3945, 0.5131

Built environment domain index 0.5196 0.4565, 0.5827

Non-metropolitan urbanized areas;
RUCC 2 (n = 323)

Coefficient 95% CI

Air domain index 0.3343 0.0.80, 0.5705

Water domain index 0.2958 0.0738, 0.5178

Land domain index 0.5506 0.4168, 0.6845

Sociodemographic domain index 0.5963 0.4913, 0.7012

Built environment domain index 0.3769 0.1719, 0.5819

Less-urbanized areas; RUCC 3
(n = 1059)

Coefficient 95% CI

Air domain index 0.1609 0.0477, 0.2740

Water domain index 0.2981 0.1976, 0.3987

Land domain index 0.5503 0.4905, 0.6058

Sociodemographic domain index 0.5675 0.5112, 0.6238

Built environment domain index 0.5102 0.4479, 0.5726

Thinly populated areas; RUCC 4
(n = 670)

Coefficient 95% CI

Air domain index 0.0285 −0.1507, 0.2076

Water domain index 0.1347 −0.0444, 0.3138

Land domain index 0.5785 0.4920, 0.6649

Sociodemographic domain index 0.6263 0.5555, 0.6972

Built environment domain index 0.5041 0.3980, 0.6103
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the variability in the EQI; in essence, these loadings an-
swer the question as to which domain is making the big-
gest contribution to the total environment. Because
most environmental health practice occurs at the do-
main level, this domain-specific information may be
even more important to policy makers and environmen-
tal health activists than the overall EQI. Drilling down
further, the variable loadings on each of the domains are
also informative for the same reason. In the land envir-
onment, for instance, it might be important to know if
pesticides or superfund sites seem to be contributing
the largest share of variability to the land index. This in-
formation has obvious implications for public health

intervention. The RUCC-stratified domains and EQI in-
dices will also make an important public health contribu-
tion. We know urban and rural areas differ in important
ways and these RUCC-stratified indices help us disentan-
gle what domains may be driving some of the observed
rural–urban differences in public health outcomes. While
the total amount of environmental variability accounted
for by any given EQI domain or the overall index may
be modest, they contribute more control for or explan-
ation of non-residential environmental conditions than
has heretofore been possible.
While the process and product reported here makes a

clear contribution to the environmental health literature,

Table 14 Correlations between sociodemographic variables, RUCC-stratified EQI and overall EQI for 3141 U.S. counties
(2000–2005)

Overall EQI Metro-urban EQI Non-metro EQI Less urban EQI Thin pop / rural EQI

Female (%) 0.199 0.140 0.103 0.141 0.213

Male (%) −0.199 −0.140 −0.103 −0.141 −0.213

Under 5 (%) 0.047 0.024 −0.316 −0.304 −0.211

Over 65 (%) −0.209 −0.173 0.106 0.222 0.238

White non-Hispanic (%) 0.262 0.191 0.600 0.535 0.422

Black non-Hispanic (%) −0.167 −0.267 −0.412 −0.385 −0.189

Figure 2 Distribution of overall EQI scores across rural–urban categories for years 2000-2005*.
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this work is not without limitations. Despite the large
number of variables used for the EQI, data scarcity – in
terms of spatial and temporal coverage – represents an
important limitation to this work. Many of the data
sources required spatial or temporal kriging to construct
county level estimates. For example, even with extensive
air monitoring networks, the measured spatial coverage
of the U.S. is incomplete, particularly in rural areas.
Many data sources are disproportionately located in
urban areas (e.g., crime data), whereas others are found
in rural areas (e.g., industrial livestock operations). The
nonrandom distribution of environmental risk means
that virtually all interpolated data are inaccurate, and
our ability to draw inference for data-sparse rural areas
is impaired.
Another potential limitation of the EQI is its construc-

tion at the county level. While the county may be too
diffuse a unit to enable specific exposure assessment, it
is a fair representation of the non-residential ambient
environment. By explicitly describing the EQI construc-
tion process, we provide the necessary tools for interested
investigators to apply at smaller units of aggregation with
more specific data sources. Further, we plan to provide ac-
cess to the data used to construct the EQI publically on
the U.S. EPA website. A third limitation results from the
data that were available for EQI construction. One aspect
of our literature review identifying data sources used “in-
fant mortality and environment” as search terms. While
we contend we obtained adequate representation of the
five environmental domains, it is possible our use of infant
mortality precluded us from finding an environmental
domain. Despite this possibility, however, the index is so
broadly representative of the non-residential ambient en-
vironment it should be widely applicable to other health
outcomes. Most of the EQI data were collected for non-
research purposes; therefore, the data collection method-
ology, quality control and reporting varied across data
source, domain and variable. We endeavored to include
comparable data whenever possible, but data-quality dif-
ferences are important to recognize. Because we relied on
available data, and not all sources of environmental quality
are measured at the county level, not all potentially
relevant data are represented in the EQI. However, we
attempted to capture as much as available for each of the
five domains. Further, more data are collected in urban
areas, which likely results in a more valid estimate of
urban compared with rural environments. We have little
information for Native American reservations and Na-
tional Parks, for instance, which limits our ability to com-
ment on those county spaces. In addition, the use of the
EQI as a measure of exposure assumes exposure to “envir-
onment” is consistent for all individuals, but the extent of
environmental exposure was not assessed. The EQI is
focused mostly on the outside environment, which may

not be the most relevant exposure in relation to human
health and disease. Finally, population-level analyses
offer little predictive utility for individual-level risk.
Therefore, while the index may be useful at identifying
lower quality environments that may predict population-
level health outcomes, it cannot be used to predict adverse
outcomes for individuals. We believe the EQI, and the ap-
proach taken for its development, represents a promising
step and we encourage others to contribute additional
work to this endeavor.

Conclusions
The Environmental Quality Index was constructed for
all counties in the United States and incorporates a wide
variety of data to provide a broad picture of environ-
mental conditions in the United States. The approach
we undertook was based on a reproducible methodology
that accesses mostly publically-available data sources.
Future development of the EQI includes assessing the
consequences of the variable choices through sensitivity
analyses, updating for 2006–2010, and exploring other
levels of spatial aggregation. In this manuscript we
present a valid, easily replicable methodology that can be
broadly applied at different units of aggregation. As en-
vironmental public health researchers, we are fundamen-
tally interested in the environmental contribution to
human health. The EQI may aid us in developing know-
ledge on connections between the overall environment
and human health outcomes.
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