2,066 research outputs found

    Planarian Fragments Behave As Whole Animals

    Get PDF
    Behavioral responses of freshwater planarians have been studied for over a century. In recent decades, behavior has been used as a readout to study planarian development and regeneration, wound healing, molecular evolution, neurotoxicology, and learning and memory. The planarian nervous system is among the simplest of the bilaterally symmetric animals, with an anterior brain attached to two ventral nerve cords interconnected by multiple commissures. We found that, in response to mechanical and near-UV stimulation, head stimulation produces turning, tail stimulation produces contraction, and trunk stimulation produces midbody elongation in the planarian Dugesia japonica. When cut into two or three pieces, the anterior end of each headless piece switched its behavior to turning instead of elongation; i.e., it responded as though it were the head. In addition, posterior ends of the head and midbody pieces sometimes produced contraction instead of elongation. Thus, each severed piece acts like an intact animal, with each midbody region having nearly complete behavioral capabilities. These observations show that each midbody region reads the global state of the organism and adapts its response to incoming signals from the remaining tissue. Selective lateral incisions showed that the changes in behavior are not due to nonselective pain responses and that the ventral nerve cords and cross-connectives are responsible for coordinating local behaviors. Our findings highlight a fast functional reorganization of the planarian nervous system that complements the slower repairs provided by regeneration. This reorganization provides needed behavioral responses for survival as regeneration proceeds

    Head Removal Enhances Planarian Electrotaxis

    Get PDF
    Certain animal species utilize electric fields for communication, hunting and spatial orientation. Freshwater planarians move toward the cathode in a static electric field (cathodic electrotaxis). This planarian behavior was first described by Raymond Pearl more than a century ago. However, planarian electrotaxis has received little attention since, and the underlying mechanisms and evolutionary significance remain unknown. To close this knowledge gap, we developed an apparatus and scoring metrics for automated quantitative and mechanistic studies of planarian behavior upon exposure to a static electric field. Using this automated setup, we characterized electrotaxis in the planarian Dugesia japonica and found that this species responds to voltage instead of current, in contrast to results from previous studies using other planarian species. Surprisingly, we found differences in electrotaxis ability between small (shorter) and large (longer) planarians. To determine the cause of these differences, we took advantage of the regenerative abilities of planarians and compared electrotaxis in head, tail and trunk fragments of various lengths. We found that tail and trunk fragments electrotaxed, whereas head fragments did not, regardless of size. Based on these data, we hypothesized that signals from the head may interfere with electrotaxis when the head area/body area reached a critical threshold. In support of this hypothesis, we found that (1) smaller intact planarians that cannot electrotax have a relatively larger head-to-body-ratio than large planarians that can electrotax, and (2) the electrotaxis behavior of cut head fragments was negatively correlated with the head-to-body ratio of the fragments. Moreover, we could restore cathodic electrotaxis in head fragments via decapitation, directly demonstrating inhibition of electrotaxis by the head

    Identification of Neural Circuits by Imaging Coherent Electrical Activity with FRET-Based Dyes

    Get PDF
    AbstractWe show that neurons that underlie rhythmic patterns of electrical output may be identified by optical imaging and frequency-domain analysis. Our contrast agent is a two-component dye system in which changes in membrane potential modulate the relative emission between a pair of fluorophores. We demonstrate our methods with the circuit responsible for fictive swimming in the isolated leech nerve cord. The output of a motor neuron provides a reference signal for the phase-sensitive detection of changes in fluorescence from individual neurons in a ganglion. We identify known and possibly novel neurons that participate in the swim rhythm and determine their phases within a cycle. A variant of this approach is used to identify the postsynaptic followers of intracellularly stimulated neurons

    CLNet: A Compact Latent Network for Fast Adjusting Siamese Trackers

    Get PDF
    © 2020, Springer Nature Switzerland AG. In this paper, we provide a deep analysis for Siamese-based trackers and find that the one core reason for their failure on challenging cases can be attributed to the problem of decisive samples missing during offline training. Furthermore, we notice that the samples given in the first frame can be viewed as the decisive samples for the sequence since they contain rich sequence-specific information. To make full use of these sequence-specific samples, we propose a compact latent network to quickly adjust the tracking model to adapt to new scenes. A statistic-based compact latent feature is proposed to efficiently capture the sequence-specific information for the fast adjustment. In addition, we design a new training approach based on a diverse sample mining strategy to further improve the discrimination ability of our compact latent network. To evaluate the effectiveness of our method, we apply it to adjust a recent state-of-the-art tracker, SiamRPN++. Extensive experimental results on five recent benchmarks demonstrate that the adjusted tracker achieves promising improvement in terms of tracking accuracy, with almost the same speed. The code and models are available at https://github.com/xingpingdong/CLNet-tracking

    Impact of Community-Based Larviciding on the Prevalence of Malaria Infection in Dar es Salaam, Tanzania.

    Get PDF
    The use of larval source management is not prioritized by contemporary malaria control programs in sub-Saharan Africa despite historical success. Larviciding, in particular, could be effective in urban areas where transmission is focal and accessibility to Anopheles breeding habitats is generally easier than in rural settings. The objective of this study is to assess the effectiveness of a community-based microbial larviciding intervention to reduce the prevalence of malaria infection in Dar es Salaam, United Republic of Tanzania. Larviciding was implemented in 3 out of 15 targeted wards of Dar es Salaam in 2006 after two years of baseline data collection. This intervention was subsequently scaled up to 9 wards a year later, and to all 15 targeted wards in 2008. Continuous randomized cluster sampling of malaria prevalence and socio-demographic characteristics was carried out during 6 survey rounds (2004-2008), which included both cross-sectional and longitudinal data (N = 64,537). Bayesian random effects logistic regression models were used to quantify the effect of the intervention on malaria prevalence at the individual level. Effect size estimates suggest a significant protective effect of the larviciding intervention. After adjustment for confounders, the odds of individuals living in areas treated with larviciding being infected with malaria were 21% lower (Odds Ratio = 0.79; 95% Credible Intervals: 0.66-0.93) than those who lived in areas not treated. The larviciding intervention was most effective during dry seasons and had synergistic effects with other protective measures such as use of insecticide-treated bed nets and house proofing (i.e., complete ceiling or window screens). A large-scale community-based larviciding intervention significantly reduced the prevalence of malaria infection in urban Dar es Salaam

    Neural circuits controlling behavior and autonomic functions in medicinal leeches

    Get PDF
    In the study of the neural circuits underlying behavior and autonomic functions, the stereotyped and accessible nervous system of medicinal leeches, Hirudo sp., has been particularly informative. These leeches express well-defined behaviors and autonomic movements which are amenable to investigation at the circuit and neuronal levels. In this review, we discuss some of the best understood of these movements and the circuits which underlie them, focusing on swimming, crawling and heartbeat. We also discuss the rudiments of decision-making: the selection between generally mutually exclusive behaviors at the neuronal level

    Species-specific behavioral patterns correlate with differences in synaptic connections between homologous mechanosensory neurons

    Get PDF
    We characterized the behavioral responses of two leech species, Hirudo verbana and Erpobdella obscura, to mechanical skin stimulation and examined the interactions between the pressure mechanosensory neurons (P cells) that innervate the skin. To quantify behavioral responses, we stimulated both intact leeches and isolated body wall preparations from the two species. In response to mechanical stimulation, Hirudo showed local bending behavior, in which the body wall shortened only on the side of the stimulation. Erpobdella, in contrast, contracted both sides of the body in response to touch. To investigate the neuronal basis for this behavioral difference, we studied the interactions between P cells. Each midbody ganglion has four P cells; each cell innervates a different quadrant of the body wall. Consistent with local bending, activating any one P cell in Hirudo elicited polysynaptic inhibitory potentials in the other P cells. In contrast, the P cells in Erpobdella had excitatory polysynaptic connections, consistent with the segment-wide contraction observed in this species. In addition, activating individual P cells caused asymmetrical body wall contractions in Hirudo and symmetrical body wall contractions in Erpobdella. These results suggest that the different behavioral responses in Erpobdella and Hirudo are partly mediated by interactions among mechanosensory cells
    corecore