3 research outputs found

    Developmental neurotoxicants in human milk: Comparison of levels and intakes in three European countries

    No full text
    Developmental neurotoxicants (DNTs), such as methylmercury (MeHg), polychlorinated biphenyls (PCBs) and selected organochlorine pesticides (OCPs), have gained increasing interest recently due to their possible relation to developmental disorders in children, which are increasing worldwide. We analyzed levels of 14 developmental neurotoxicants in human milk samples from Slovakia (n=37), the Netherlands (n=120) and Norway (n=388). Positive identification for most target analytes was >95% in all samples. In all three countries MeHg was measured for the first time in mother milk. The highest MeHg levels were observed in Norway (39pgg(-1) ww) with the highest fish consumption. Levels of indicator PCBs (iPCBs, sum of PCB 28, 52, 101, 138, 153 and 180), HCB and DDE+DDT were 2-4 times higher in Slovakia compared to the Netherlands or Norway. The levels of MeHg and organochlorine compounds were used for calculations of weekly or daily intakes (top-down approach) by means of pharmacokinetic modeling. The intakes ranged from 0.014 to 0.142ÎĽgkgbw(-1)week(-1) for MeHg and from 0.043 to 17.4ngkgbw(-1)day(-1) for organochlorine compounds in all three countries. Intakes of iPCBs exceeded a tolerable daily intake of 10ngkgbw(-1)day(-1) in 16% of the Slovak participants. The top-down estimates were compared with bottom-up intakes based on national dietary estimates and the results showed good consistency between both approaches, with the bottom-up intakes exceeding the top-down by a factor of maximum 3.8 for iPCBs in the Netherlands and 3.9 for HCB in Slovakia. This confirms that food consumption in all three countries represents the dominant pathway of exposure to these developmental neurotoxicants

    An Outbreak of Trichophyton quinckeanum Zoonotic Infections in the Czech Republic Transmitted from Cats and Dogs

    No full text
    Trichophyton quinckeanum, a zoophilic dermatophyte mostly known as the causative agent of rodent favus, is relatively rarely reported to cause human infections. Indeed, no infections were detected in Czechia between 2012 and 2015 despite routine verification of species identification by ITS rDNA sequencing. By contrast, 25 human and 11 animal cases of infection were documented from December 2016 to December 2020 and the rates tended to grow every following year. Interestingly, most of the cases were reported in the Olomouc region, suggesting a local outbreak. We bring the evidence that human T. quinckeanum infections are most commonly contracted from infected cats or, less frequently, dogs. Although rodents or contaminated soil and environment could be the source of infection to cats and dogs, the occurrence of infections in multiple animals in the same household suggests direct transmission among animals. Confirmation of the identification by molecular methods is highly recommended due to morphological similarity with T. mentagrophytes/T. interdigitale. Antifungal susceptibility testing of isolates to eight antifungals was performed using EUCAST methodology (E.Def 11.0). Among the tested antifungals, terbinafine, amorolfine, ciclopirox and efinaconazole were most potent in vitro and elevated minimum inhibitory concentrations were obtained for fluconazole and ketoconazole
    corecore