138 research outputs found

    Improving urban bicycle infrastructure - an exploratory study based on the effects from the COVID-19 Lockdown

    Get PDF
    INTRODUCTION: During the COVID-19 lockdown significant improvements in urban air quality were detected due to the absence of motorized vehicles. It is crucial to perpetuate such improvements to maintain and improve public health simultaneously. Therefore, this exploratory study approached bicycle infrastructure in the case of Munich (Germany) to find out which specific bicycle lanes meet the demands of its users, how such infrastructure looks like, and which characteristics are potentially important. METHODS: To identify patterns of bicycle infrastructure in Munich exploratory data is collected over the timespan of three consecutive weeks in August by a bicycle rider at different times of the day. We measure position, time, velocity, pulse, level of sound, temperature and humidity. In the next step, we qualitatively identified different segments and applied a cluster analysis to quantitatively describe those segments regarding the measured factors. The data allows us to identify which bicycle lanes have a particular set of measurements, indicating a favorable construction for bike riders. RESULTS: In the exploratory dataset, five relevant segment clusters are identified: viscous, slow, inconsistent, accelerating, and best-performance. The segments that are identified as best-performance enable bicycle riders to travel efficiently and safely at amenable distances in urban areas. They are characterized by their width, little to no interaction with motorized traffic as well as pedestrians, and effective traffic light control. DISCUSSION: We propose two levels of discussion: (1) revolves around what kind of bicycles lanes from the case study can help to increase bicycle usage in urban areas, while simultaneously improving public health and mitigating climate change challenges and (2) discussing the possibilities, limitations and necessary improvements of this kind of exploratory methodology

    Improving urban bicycle infrastructure-an exploratory study based on the effects from the COVID-19 Lockdown

    Get PDF
    Introduction: During the COVID-19 lockdown significant improvements in urban air quality were detected due to the absence of motorized vehicles. It is crucial to perpetuate such improvements to maintain and improve public health simultaneously. Therefore, this exploratory study approached bicycle infrastructure in the case of Munich (Germany) to find out which specific bicycle lanes meet the demands of its users, how such infrastructure looks like, and which characteristics are potentially important. Methods: To identify patterns of bicycle infrastructure in Munich exploratory data is collected over the timespan of three consecutive weeks in August by a bicycle rider at different times of the day. We measure position, time, velocity, pulse, level of sound, temperature and humidity. In the next step, we qualitatively identified different segments and applied a cluster analysis to quantitatively describe those segments regarding the measured factors. The data allows us to identify which bicycle lanes have a particular set of measurements, indicating a favorable construction for bike riders. Results: In the exploratory dataset, five relevant segment clusters are identified: viscous, slow, inconsistent, accelerating, and best-performance. The segments that are identified as best-performance enable bicycle riders to travel efficiently and safely at amenable distances in urban areas. They are characterized by their width, little to no interaction with motorized traffic as well as pedestrians, and effective traffic light control. Discussion: We propose two levels of discussion: (1) revolves around what kind of bicycles lanes from the case study can help to increase bicycle usage in urban areas, while simultaneously improving public health and mitigating climate change challenges and (2) discussing the possibilities, limitations and necessary improvements of this kind of exploratory methodology

    Räumliche Lärmanalyse anhand von erweiterten Floating-Car-Daten (xFCD)

    Get PDF

    Determining traffic congestion utilizing a fuzzy logic model and Floating Car Data (FCD)

    Get PDF
    Traffic congestion is a dynamic spatial and temporal process and as such might not be possible to model with linear functions of various dependent variables. That leaves a lot of space for non-linear approximates, such as neutral networks and fuzzy logic. In this paper, the focus is on the fuzzy logic as a possible approach for dealing with the problems of measuring traffic congestion. We investigate the application of this framework on a selected case study, and use floating car data (FCD) collected in Augsburg, Germany. A fuzzy inference system is built to detect degrees of congestion on a federal highway B17. With FCD, it is possible to obtain local speed information on almost all parts of the network. This information, together with collected vehicle location, time and heading, can be further processed and transformed into valuable information in the form of trip routes, travel times, etc. Initial results are compared with traditional method of expressing levels of congestion on a road network e.g. Level of Service – LOS. The fuzzy model, with segmented mean speed and travel time parameters, performed well and showed to be promising approach to detect traffic congestions. This approach can be further improved by involving more input parameters, such as density or vehicle flow, which might reflect traffic congestion event even more realistically

    Fuzzy inference approach in traffic congestion detection

    Get PDF
    One of the major tasks within the concept of an intelligent transportation system is the immediate indication of traffic breakdowns. A conventional approach evaluates a traffic condition by classif... Document type: Articl

    Using cartograms for visualizing extended Floating Car Data (xFCD)

    Get PDF

    Floating car data and fuzzy logic for classifying congestion indexes in the city of Shanghai

    Get PDF
    In this paper, we use Floating Car Data from the city of Shanghai and Fuzzy Inference model to detect congestion indexes throughout the city. We aim to investigate to which extent traffic congestion is severe during afternoon rush hour. Additionally, we compare our results to the ones obtained by calculating congestion indexes on conventional way. Although we do not argue that our model is the best measure of congestion, it does allow the mechanism to combine different measures and to incorporate the uncertainty in the individual measures so that the compound picture of congestion can be reproduced

    Classifying complex road features in the context of car driver education

    Get PDF
    • …
    corecore