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Abstract: In this paper, we use Floating Car Data from the city of Shanghai and Fuzzy Inference model to detect 

congestion indexes throughout the city. We aim to investigate to which extent traffic congestion is severe during afternoon 

rush hour. Additionally, we compare our results to the ones obtained by calculating congestion indexes on conventional 

way. Although we do not argue that our model is the best measure of congestion, it does allow the mechanism to combine 

different measures and to incorporate the uncertainty in the individual measures so that the compound picture of 

congestion can be reproduced. 
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1. Introduction 

Is there any congestion on my way to work today? How 

can I avoid it? If I cannot avoid it, how much time will I 

need to spend in it? These are just some of the questions 

coming from ever-growing demand of drivers. Such 

questions require traffic data to be accurate, reliable, 

timely and as complete as possible.  

Throughout the years, collecting traffic data methods have 

been evolving considerably, which makes traffic 

information accessible worldwide. Conventional methods 

of gathering data (such as loop detectors) are still 

necessary but rather insufficient for obtaining good traffic 

information. Their restricted coverage and expensive costs 

of implementation and maintenance makes them less 

attractive than alternative methods. 

One such alternative and cost – effective method is based 

on collecting data from "in-vehicle" devices through 

mobile phones or GPS and it is broadly known as Floating 

Car Data (FCD) acquisition method (Cohn and Bischoff, 

2012). Floating Car Data (FCD) is an alternative and rather 

complement source of high quality data to the existing 

technologies. It is capable of improving safety, efficiency 

and reliability of the transportation system. As such, its 

role is becoming increasingly crucial in the development 

of new Intelligent Transportation Systems (ITS). 

Very often, traffic data itself, as well as traffic related 

events come with ambiguity, uncertainty, vagueness and 

imprecision. Subjectivity judgement is present in many 

traffic phenomena such as route choice, mode of 

transportation, drivers’ perception, established level of 

service, safety standards, defining criteria for alternative 

routing, etc. Therefore, existing deterministic and 

stochastic models for traffic handling cannot effectively 

deal with afore mentioned characteristics. Rather, we 

approach to these problems by using different fuzzy set 

theory techniques. 

In this paper, we use FCD obtained from taxi vehicles in 

Shanghai. We build two input – one output fuzzy inference 

model in order to detect Congestion Indexes throughout 

the city during afternoon peak hours. We further discuss 

our findings in relation to results obtained from 

conventional methods of detecting congestion indexes. 

2. Floating Car Data in Traffic Monitoring 

The principle of FCD is to collect traffic data by locating 

the vehicle via mobile phones or GPS over the entire road 

network. In other words, vehicles act as sensors for the 

road network. Collected data (such as car location, speed 

and direction of travel) are sent anonymously to a central 

processing center and, if necessary, sent back to the drivers 

on the road, in form of useful information - status of traffic, 

less congested route, approximate time to be spent in 

congestion event, etc. (Stanica et al., 2013).  

Sanwal and Walrand (1995) investigated upon 

opportunities to have a traffic monitoring system based on 

probe vehicle reports (position, speeds, or travel times), 

and concluded that they constitute a feasible source of 

traffic data. Yim and Cayford (2001) and Yim (2003) 

argue that if GPS equipped cell phones are widely used, 

they will become more attractive and realistic alternative 

for traffic monitoring. Zito et al. (1995) also investigated 

the use of GPS devices as a source of data for traffic 

monitoring. They performed tests to evaluate the accuracy 
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of the GPS as a source of velocity and acceleration data. 

The found accuracy level was good.   

The main drawback of this technology is that its low 

penetration in the population is not sufficient to provide an 

exhaustive coverage of the transportation network. 

Nonetheless, Sanwal and Walrand (1995); Westerman et 

al. (1996); Yim and Cayford (2001) argue that data coming 

from no more than 5% of the total flow are sufficient to 

obtain acceptably accurate traffic information. Similarly 

Xiaowen et al. (2003) define confidence intervals for 

accuracy in terms of average speed and travel times across 

the links as a function of probe penetration. The authors 

conclude that 3% to 5% probe penetration is sufficient for 

confidence levels of 90% and above.  

Moore et al. (2001); Schwarzenegger et al. (2008); Bertini 

and Tantiyanugulchai (2004) suggest the possibility of 

using dedicated fleets of vehicles equipped with GPS (such 

as delivery trucks, taxis or buses) to monitor traffic. Even 

though this type of traffic information acquisition faces 

challenges concerning coverage issues, penetration, biases 

due to operational constrains and vehicle travel patterns, 

we argue that it is still a viable source of data, particularly 

in large cities.  

FCD has a wide range of applications: network 

performance analysis (e.g. network monitoring, 

before/after analysis, route choice); forecasting (traffic 

growth, origin – destination relations, emission 

modelling); road maintenance and safety analysis as well 

as location planning. In this particular example, we are 

interested how to use FCD to detect congestion indexes in 

urban areas. 

3. Congestion Index measures 

According to the existing research, several criteria should 

be taken into account when measuring congestion. 

Levinson and Lomax (1996) define congestion index as a 

measure of vehicle travel density on major roadways in an 

urban area. They further discuss that congestion index 

should measure congestion at a range of analysis level (a 

route, subarea or entire urban region) and in relation to a 

standard. It should provide a continuous range of values, 

be based on travel time data because travel time based 

measures can be used for multimodal analysis and 

adequately describe various magnitudes of congested 

traffic conditions. In addition, Lomax et al (1997) 

elaborate on issues in measuring congestion. Congestion 

measures have to reflect full range of road network 

performance, based on widely available data, and allow 

comparison across metropolitan areas. 

Basic congestion measures are delay estimations. Delay is 

seen as an additional time spent in traffic in comparison to 

an acceptable or free - flow travel time. As a beginning of 

a delay threshold, Lindley (1987) use a volume to capacity 

(V/C) ratio of 0.77 (or the speed of 55 miles per hour (mph) 

corresponding to V/C ratio of 0.77). Schrank and Lomax 

(2005) use 60 mph for freeways and 35 mph for arterial 

roads as free-flow speed for comparison with congested 

speeds. Victoria Transport Policy Institute (2018) 

emphasize that some roadways have instruments that 

measure hourly traffic volumes and speeds. By averaging 

these counts, one can calculate average daily/hourly 

measure of traffic flow as well as average speed (Table 1). 

These estimates are further used as standards when 

compared with real world traffic data. Based upon results, 

one can detect and categorize five levels of congestion 

namely free flow, moderate, heavy, severe and extreme 

congestion.  

 

Arterial 

road 

Average Hourly 

Traffic Per Lane 

Average Vehicle 

Speed (km/h) 

Extreme > 417  34 

Severe 354 – 417  37 

Heavy 292 – 354  43 

Moderate 208 – 292  48 

Free Flow < 208 56 

Table 1. Roadway Congestion Categories (original measures are 
expressed as Average Daily Traffic Per Lane and Average 
Vehicle Speed in miles per hour), based on VTPI (2018) 

One of the mostly used congestion measures is Level Of 

Service (LOS) measure. The LOS of a facility is 

determined by traffic flow characteristics such as vehicle 

density, volume-to-capacity ratio, average speed and 

intersection delay, depending on facility type. The scale of 

LOS measure has six discrete classes ranging from A to F 

where A represents completely free flow and F extreme 

congestion (Röss et al., 1985). 

Schrank et al. (1990) developed a Roadway congestion 

Index (RCI) as a measure of area - wide severity of 

congestion. The daily vehicle per mile per lane of the area 

is weighted by the type of the road (freeway of arterial) 

and compared with the total expected vehicles per mile in 

the area under congested conditions (as well weighted by 

the road type).  

Lomax et al. (1997) developed Relative Delay Rate as a 

measure of flow quality relative to ideal or acceptable 

conditions. Relative Delay Rate is calculated as the ratio 

between difference of actual and acceptable travel time, 

divided by the acceptable travel time.  

D’Este et al. (1999) and Taylor (1992) developed a 

measure called Congestion Index, as a ratio between 

difference of actual travel time for the section and free 

flow travel time, divided by the free flow travel time. Here, 

free flow travel time is time traveled obeying the speed 

limits or travel time measured in the field as density 

approaches zero (no congestion). 

None of these measures considers that real world traffic 

information is not always precise and human perception of 

the ideal quality of flow is usually vague. Since both 

observations and measurements are approximate, any 

measure of congestion has to be associated with 

uncertainty regarding the accuracy of its representation of 

the real conditions. Real world conditions change 
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depending on the roadway section and traffic participant’s 

experience and familiarity with the area. Stepwise 

approaches, such as LOS, can lead to a wrong impression 

that the measures are very well defined. Nonetheless, even 

a small change in the input sometimes can significantly 

change the outputs. As congestion is seen as a vague 

concept, one should include combination of conditions in 

order to model the “traffic participants feeling” of 

acceptable and good. Hence, the process of determining 

the degree of congestion has to involve imprecise 

quantities and subjective notion of acceptability, as well as 

to use judgement in the calculation and interpretation of 

the results (Aftabuzman, 2007). Therefore, we suggest 

including fuzzy measures. Since the fuzzy set theory 

recognizes the vague characteristics of traffic data, 

different fuzzy set theory techniques can be used to 

properly model traffic and transportation problems 

characterized by ambiguity, subjectivity and uncertainty. 

4. Fuzzy Logic Theory and Fuzzy Inference 

System in Traffic events modelling 

Fuzzy set theory was introduced by Zadeh (1965) as a 

means of representing and manipulating data that was not 

precise, but rather fuzzy. Zadeh successfully showed that 

vague logical statements enable the formation of 

algorithms that can use vague data to derive vague 

inferences. The aim was to mathematically represent 

uncertainty and vagueness and to provide formalized tools 

for dealing with the imprecision intrinsic to many 

problems (Fullér and Zimmermann, 1993). 

Many traffic related problems are ambiguous, vague and 

characterized by subjectivity. It is hard to disregard the fact 

that subjective judgment is present in problems dealing 

with the choice of route, a driver's perceptions and 

reactions, an established level of service, etc. Both 

deterministic and stochastic models that have been 

developed to deal with traffic events are characterized by 

mathematics based on binary logic (Sarkar et al., 2012). 

Binary logic is, undoubtedly, the basis for the development 

of many scientific disciplines; however, it cannot deal 

effectively with traffic uncertainty, vagueness and 

ambiguity. Since the fuzzy set theory recognizes the vague 

boundary that exists in some sets, different fuzzy set theory 

techniques need to be used in order to properly model 

traffic events. 

Fuzzy inference is the process of formulating the mapping 

from a given input to an output using fuzzy logic (Fullér 

and Zimmermann, 1993). The process itself involves 

several phases: defining and fuzzifying input parameters, 

applying fuzzy rules and operators, applying implication 

and aggregation method, and defuzzification (if 

necessary).  

Defining input parameters is a challenging task and 

involves both knowledge and experience in the specific 

filed (Klir and Yuan, 1995). Fuzzifying input parameters 

refers to assigning the crisp numerical values of selected 

inputs, through membership functions, into membership 

degrees of the fuzzy set. In order to project input variables 

onto outer space, one has to specify fuzzy rules and 

operators. Fuzzy if – then rules are specified based on 

previous data exploration and experience in specific traffic 

event. Linguistic variables of the fuzzy rule   if – part are 

connected with AND/OR fuzzy operators, while then – 

part infers the conclusion out of if –part based on min 

operator. Then – parts often come as fuzzy sets themselves 

and need to be combined into a single fuzzy set. This step 

is called aggregation and it is followed by defuzzification 

– transformation of the fuzzy set into crisp values. 

5. Floating Car Data (FCD) from Shanghai’ 

Taxis 

The inspected FCD set is the result of a survey on a taxi 

fleet in Shanghai with an average of 7120 frequently 

observed vehicles. This number represents the average for 

each hour. In total there are around 10,000 different taxi 

identifications (Keler and Krisp, 2016). 

Original FCD dataset contains 15 selected days, between 

February 1st  and March 1st, 2007. The data structure of the 

inspected data set is shown in the Table 2. Out of originally 

ten provided attributes, we select to work with only certain 

attributes – car ID, longitude, latitude, time and speed. 

 

Field name Details 

Car ID The unique ID of the car 

Longitude Longitude  

Latitude Latitude 

Time In form of yyyy-mm-dd 

Speed In km/h 

Table 2. Data structure of the taxi FCD of Shanghai 

While usually travel times are estimated from FCD, we use 

FCD for estimating traffic flows. Having the position 

(longitude and latitude) and identification of each taxi, we 

are able to reconstruct vehicle trajectories. Additionally, 

time component allows us to partition these trajectories 

depending on which part of the day they were recorded.  

We are specifically interested in the afternoon peak hours, 

which in Shanghai range from 4pm until 7pm. The data is 

further grouped based on proposed hourly distribution and 

new attributes are calculated – traffic flow and average 

speed. Traffic flow is obtained by counting the number of 

vehicles that pass certain cross – section (here city district 

1 - 15) per unit of time (here one hour interval - 4pm, 5pm, 

6pm, or 7pm).  

Average speed is calculated as normal arithmetic average 

of the individual vehicle speeds in a time interval of one 

hour. Figure 1 shows the case study area and Shanghai’s 

districts based on which new attributes – traffic flow and 

average speed are calculated. 
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Figure 1. Administrative districts of Shanghai, indexed with 
numbers from 1 to 15  

We further compare calculated values of flow and speed 

within each district with the standard values proposed by 

VTPI (2018) for arterial roads. This conventional way of 

observing traffic behavior allows us to immediately see 

how congested Shanghai’ districts are. Table 3 shows 

traffic flow and average speed obtained from Shanghai’ 

taxi FCD, for all four hours of the afternoon peak hour 

(4pm, 5pm, 6pm and 7pm respectively). 

 

Table 3. Calculated traffic flow and average speed of the 
inspected taxi FCD of Shanghai, for the afternoon rush hours 

6. Fuzzy Inference Model for detecting 

Congestion Index in districts of Shanghai 

We use previously calculated traffic characteristics – 

traffic flow and average speed as the input variables for the 

fuzzy inference model. Figure 2 shows proposed fuzzy 

inference model with input variables, fuzzy input 

membership functions with assigned linguistic variables, 

specification of the fuzzy if – then rules, as well as output 

variable – Congestion Index fuzzified with five linguistic 

variables (CI 1, CI 2, CI 3, CI 4 and CI 5 respectively). 

 
Figure 2. Fuzzy Inference model with two input variables – 
traffic flow and mean speed and one output variable – congestion 

index 

We fuzzify our inputs by assigning them with five 

membership functions respectively. These neighboring 

membership functions overlap with each other by 20 - 

50%, and are all of the same kind (triangular membership 

functions). They describe the middle range of the universe 

of discourse. In addition, two half-triangle membership 

functions represent the end of the domain of discourse 

respectively.  

The input variable Flow is assigned with the following 

linguistic variables: Free Flow, Moderate, Heavy, Severe 

and Extreme. The input variable Speed is fuzzified as: 

Normal, Moderate, Slow, Very Slow and Extremely Slow 

speed. We further specify one output variable – 

Congestion Index by assigning as well five congestion 

levels (Table 4). 

 

Congestion Index Description 

CI 1 No congestion 

CI 2 Moderate Congestion 

CI 3 Heavy Congestion 

CI 4 Severe Congestion 

CI 5 Extreme Congestion 

Table 4. Interpretation of Fuzzy Inference Model Output 

Variable (Congestion Index)  

Our model has 20 if –then rule combinations connected 

with AND operator meaning that minimum condition has 

to be met in order for rule to be fulfilled. We run the model 

to get the individual congestion indexes within all districts 

of Shanghai, for all four hours of rush hour event. 

7. Analyses results 

First results show us the distribution of traffic flow and 

accompanied average speed for each individual district of 

District Speed Flow Speed Flow Speed Flow Speed Flow

1 15,5 853 15,2 832 15,2 864 15,6 886

2 25,6 753 24,7 133 24,9 143 23,6 140

3 24,9 1473 23,5 1437 24,1 1505 24,6 1533

4 22,2 753 19,2 748 20,5 796 21,9 791

5 17,2 1623 15,9 1565 16,4 1559 18,8 1624

6 20,5 846 17,3 817 18,3 822 21,2 849

7 21,8 793 19,6 793 20,6 794 23,0 857

8 29,4 72 27,8 68 27,4 64 29,3 72

9 22,6 950 21,6 951 21,4 993 22,6 1063

10 21,3 1106 19,4 1035 19,7 1020 23,1 1130

11 19,2 1369 17,4 1239 17,3 1237 22,1 1328

12 18,2 1382 16,7 1332 16,9 1285 19,7 1363

13 29,9 129 27,9 142 29,3 140 29,5 141

14 26,1 21 27,9 27 22,2 24 21,7 26

15 29,5 7 36,6 6 41,2 3 27,6 4

4pm 5pm 6pm 7pm
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Shanghai, during afternoon rush hour (Table 3). We can 

observe almost the same pattern in both flow and speed 

distribution within the entire period of time. In addition, 

we notice slightly different behavior of both variables in 

district 15, compared to the other districts. Significantly 

lower flow rate values are also observed in district 14. 

Second results refer to the outputs of the proposed fuzzy 

inference model. Figure 3(a) shows the detected 

congestion index throughout the city at the beginning of 

rush hour, at 4pm. We observe extreme congestion in all 

districts of the city, except districts 14 and 15 where 

congestion shows to be no present and heavy respectively. 

Figure 3(b) shows detected congestion indexes in the rest 

of the peak hour interval, for all city districts as well. Even 

though similarity with the first rush hour (4pm) is obvious, 

we can still observe slight worsening of the traffic 

conditions in the district 14, where congestion goes from 

being heavy to severe (for the rest of the observed interval) 

 

 

a) 

 

b) 

Figure 3. Detected congestion indexes throughout the city of 
Shanghai, at the afternoon peak hours ((a) 4pm, (b) 5 - 7pm) 

8. Discussion and Conclusion – feasibility of 

using FCD and fuzzy logic theory in detecting 

area – wide congestion indexes 

We use FCD to obtain two variables – traffic flow and 

average speed. Literature findings suggest best ways of 

calculating travel times from FCD rather than some other 

elements, such as flow rates. Having that in mind, we 

define our own standard on how to count the number of 

vehicles passing a certain cross – section per time unit. In 

addition, we work with row FCD data meaning that we do 

not apply any map matching technique to match our data 

to existing road network, which leads to a lower accuracy 

of the reconstructed trajectories. On the other side, 

considering that penetration rate was far beyond suggested 

5%, we believe that the achieved accuracy is sufficient. 

The good example of FCD underestimation would be 

district 15, where we observe no congestion or free flow 

most probably because of low FCD coverage in this area. 

The second calculated variable is average speed. In 

general, speed is the distance covered per unit of time. In 

practice, average speed is measured by sampling vehicles 

in a given area over a period of time. It is important to 

distinguish time from space mean speed. By averaging the 

speeds of all vehicles in specific location interval, we get 

time mean speed. However, average speed measurements 

obtained this way are not accurate enough because 

instantaneous speeds averaged over several vehicles do not 

account for the difference in travel time for the vehicles 

that are traveling at different speeds over the same 

distance. The better approach would be to calculate space 

mean speed over specific interval, since space mean speed 

is seen as harmonic mean of the individual speeds. 

Based on these considerations, our proposed fuzzy model 

is fed with input variables which could be further 

improved. That means that the model itself could show 

better performance, than it already has. We already 

stressed the importance of properly specifying input 

variables, as well as fuzzy if – then rules.  

Nevertheless, our model was able to detect finer 

distribution of traffic congestion throughout the city, 

compared with the conventional method proposed by 

VTPI (2018). We observe severity of traffic in downtown 

area of Shanghai, as well as its surrounding districts, but 

also transition between heavy to severe congestion in 

district 14 (which was not obvious in the first results 

obtained through conventional approach). The inference 

process in our model is based on natural-language rules. 

These rules are consistent with the general drivers’ or 

traffic participants’ feeling of traffic. The proposed 

approach is simple to apply and follows common sense 

logic. 

As depicted in Figure 3, our district areas of Shanghai are 

somewhat rough as they cover a rather large area. Utilizing 

smaller districts with the same method will reveal more 

detailed information on the congestion index. Within the 

scope of this paper, we tried to define and compute the 

input values for our fuzzy inference model – traffic flow 
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and speed using FCD. Taken together, we are convinced 

that there is a great potential in FCD as cost - effective and 

large scale in traffic monitoring. 

In addition, proposed fuzzy inference method provides a 

mechanism that combines two congestion measures into a 

single composite measure of congestion (Congestion 

Index). We argue that this approach is appropriate because 

possible errors in collecting or pre – processing data cause 

the individual values to be imprecise and the implication 

of the values with respect to the severity of congestion is 

also ambiguous. 

However, future work is needed to investigate how will 

model react on previously discussed changes in input 

variables, or including even some other measures as 

inputs. Additionally, further research is needed in the 

domain of fine – tuning fuzzy if – then rules based on study 

case area characteristics as well as the nature of the chosen 

input variables. 
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