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Fuzzy inference approach in traffic congestion detection
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ABSTRACT

One of the major tasks within the concept of an intelligent transportation system is the immediate
indication of traffic breakdowns. A conventional approach evaluates a traffic condition by classify-
ing (1) traffic volume and (2) vehicles average speed. This mathematical approach is acceptable
and leads to good results as long as the analyzed data correctly represents the observed situation.
However, both traffic situations and behaviour of individual drivers cannot be foreseen. In such
circumstances, ‘crisp’ computational models cannot deal effectively with accompanied ambiguities
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and uncertainties. An alternative approach is to apply fuzzy logic systems, which enable knowl-
edge-based analysis for effective and efficient traffic congestion detection. In this paper, traffic flow
and density are inputs for the proposed fuzzy inference model and the output comes in form of
detected levels of congestion (ranging from ‘congestion free’ to ‘extreme congestions’ conditions).
The results show that fuzzy logic inference model for congestion detection might be highly
suitable for transportation planning, management and security assessment.

Introduction

Traffic congestion is one of the major issues affecting big
cities throughout the world. People seem to accept
some levels of delay; however, they often face many
negative impacts that traffic congestion evokes (e.g.
impede mobility, increase in fuel waste, loss of time,
etc.). Even though traffic congestion might be inevitable,
there are ways to cope with it and slow the rate at which
it intensifies. Several procedures could do that effec-
tively, especially if used in concert. These procedures
primarily refer to either building high occupancy tool
and/or vehicle lanes, reacting more rapidly on the traffic-
blocking accidents and incidents, extending existing or
building new transportation infrastructure, etc. These
actions, however, relieve the phenomena to a certain
level, and, most probably, only for a limited period of
time. The question is how to implement traffic guidance
and control using already available road resources even
more effectively?

The concept of Intelligent Transportation Systems
(ITS) emerged in early nineties (Wardrop 1952) aiming
to improve efficiency of surface transportation systems
and solving transportation problems through modern
information and communication technologies. ITS is
implemented to fulfil increasing traffic demand and facil-
itate efficient utilization of transport infrastructure. In
other words, its main role was and still is to improve
the efficiency of the existing transportation system.

Currently, transportation systems aim to increase the
use of alternative transportation and improve traffic
flow through variety of measures such as route guidance
systems, traffic signal improvements, incident manage-
ment and traffic flow prediction. All these measures have
two things in common; to understand the nature of
traffic at the specific location and control its growth. To
do so, each of these measures relies mostly on tradi-
tional mathematical methods (e.g. statistical regression)
and is usually unable to fully address the complexity of a
road traffic  characteristics and  relationships.
Additionally, the process of participating in a traffic
flow is heavily based on the behavioural aspects asso-
ciated with human drivers. As most of the traffic related
decisions take place under imprecision, uncertainty and
partial truth, it is immensely important and necessary to
include the human factor into the modelling equations.
This, additionally, leads to a severe increase in computa-
tion complexity and execution time. Therefore, we aim
to bring forward a measure of congestion, which
involves uncertainty (coming from impression in mea-
surements), the traveller's perception of acceptability,
variations in data and the analyst’s uncertainty about
causal relations. We approach real-life traffic congestion
detection by quantifying it with subjective knowledge
(linguistic information) rather than applying traditional
analytical techniques. We do so because our intention is
to investigate whether a knowledge-based approach
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could be adopted in traffic congestion detection and
driver behaviour modelling. The proposed model is
based on fuzzy logic theory and capable of dealing
with ambiguities and uncertainties. It consist of two
input variables that explain the nature of traffic conges-
tion and one output variable, which can be used to
indicate levels (severity) of detected congestion. Due to
the proposed number of inputs and the number of
generated fuzzy rules, the computation time and com-
plexity is within an acceptable time frame. In addition,
the proposed approach not only facilitates the under-
standing and analysis of congestions, but also shows
efficient performance and effective traffic congestion
detection possibilities with extremely high noise
tolerance.

Concepts of stream parameters in traffic
congestion detection

Traffic flow theory dates back to the early fifties when
Wardrop (1952) described traffic flows using mathema-
tical and statistical ideas. Traffic flow theory studies the
interactions between travellers (pedestrians, cyclists, dri-
vers and their vehicles) and infrastructure (highways,
signage and traffic control devices). It aims in under-
standing and developing an optimal transport network
with efficient movement of traffic and minimal traffic
congestion (Wardrop 1952). It is considered that efficient
movement of traffic is achieved through the following
goals: keep traffic flowing, slow down traffic before
known congestion areas and reduce risk of accidents
(Krause, von Altrock, and Pozybill 1996). For this cause,
the scientific field of traffic engineering defines three
main properties of the traffic stream (Immers and
Logghe 2008), including density, flow and mean speed.
These parameters are commonly known as macroscopic
traffic variables (vehicles are not seen as separate enti-
ties) and can be calculated for every location, at any
point of time and for every measurement interval.

q =k*u (M

with flow — the number of vehicles per unit of time (g),
density — the number of vehicles per unit of space (k)
and mean speed - quotient of the flow rate and the
density (u). Because this relation irrevocably links flow
rate, density and mean speed, it is often called the
fundamental relation of traffic flow theory. Additionally,
knowing two of these parameters immediately leads to
the remaining third. In practice, needful data for calcu-
lating these parameters is captured mostly using traffic
detectors and video cameras.

Knowing these parameters has a significant role in
detecting traffic congestion. The question is what is

meant by traffic congestion and how it can be categor-
ized? In which way these parameters can be set to mea-
sure and/or detect congestions? According to
Aftabuzzaman (2007), traffic congestion should be seen
and categorized as demand-capacity related congestion,
delay-travel time and cost-related congestion.

e Demand-capacity congestion is a ratio between
supply and demand or relative quality of traffic
flow ratio between ideal conditions and existing
conditions (Rosenbloom 1978). An imbalance
between traffic flow and capacity that causes
increased travel time, cost and modification of
behaviour (Miller and Li 1994). It is a situation
when traffic is moving at speeds below the
designed capacity of a roadway (Downs 2004).

e Delay travel time congestion is travel time or delay
in excess of that normally incurred under light or
free-flow travel conditions (Lomax et al. 1997). It
defines a condition of traffic delay (when the flow
of traffic is slowed below reasonable speeds)
because the number of vehicles trying to use the
road exceeds the traffic network capacity to handle
them (Weisbrod, Vary, and Treyz 2001). Another
definition suggests a presence of delays along a
physical pathway due to presence of other users
(Kockelman 2004).

e Cost-related congestion refers to the incremental
costs resulting from interference among road users
(VTPI 2005).

Many researchers from different fields have argued
upon how to measure congestion. Lomax et al. (1997)
imply that an ideal congestion measure would have
clarity and simplicity (understandable, unambiguous and
credible). That includes a descriptive and predictive ability
(ability to describe existing conditions and predict
changes) and statistical analysis capability (ability to
apply statistical techniques to provide a reasonable por-
trayal of congestion and replicability of result with a
minimum of data collection requirements). Additionally,
it includes general applicability to various modes, facilities
and time periods.

One of the most commonly used traffic congestion
measures is the level of service (LOS) represented as a
grading system using one of six letters A- F where LOS-
A denotes the best, while LOS-F the worst traffic condi-
tions (May 1990). Schrank and Lomax (1997) developed a
Roadway Congestion Index (RCl) as a measure of area
wide severity of congestion. The daily vehicle per mile
(or km) of the area is weighted by the type of the road
and compared with the total expected vehicles per mile
in the area under congested conditions (as well



weighted by the road type). If this index has values equal
or higher than 1, it indicates an undesirable area-wide
congestion level. Lomax et al. (1997) developed this
Relative delay rate (RDR) as a measure of flow quality
relative in relation to actual and acceptable travel time.
D'Este, Zito, and Taylor (1999) and Taylor (1992) devel-
oped similar measure, called Congestion Index (CI),
where flow quality is measured in relation to actual
and ideal (free flow) travel time.

Nonetheless, one has to keep in mind that both traffic
observations and measurements are approximate.
Therefore, any measure of congestion has to be asso-
ciated with uncertainty regarding the accuracy of its
representation of the real conditions. Real world condi-
tions change depending on the roadway section and
traffic participant’s experience and familiarity with the
area. Stepwise approaches, such as LOS, can lead to a
wrong impression that the measure is very well defined.
However, a small change in the input can sometimes
significantly change the outputs. Since congestion is
seen as a vague concept, one should include combina-
tion of conditions in order to model the ‘traffic partici-
pants feeling’ into classifications like ‘acceptable’ or
‘good’. Hence, the process of determining the degree
of congestion is fuzzy. It has to involve imprecise quan-
tities and subjective notion of acceptability, as well as
judgement in the calculation and interpretation of the
results.

Fuzzy logic theory in transportation and traffic

Traditional analytical techniques have often found to be
non-effective when dealing with problems in which the
dependencies between variables are too complex or
vaguely defined. Moreover, real-life situations such as
traffic are frequently hard to quantify using ‘classical’
mathematical techniques. This is mostly because subjec-
tivity judgement is present in many traffic phenomena,
such as route choice, drivers’ perception, established
LOS, defining criteria for alternative routing, etc. Since
existing crisp—computational models for solving com-
plex traffic and transportation engineering problems
cannot deal effectively with the transport decision-
makers’ ambiguities, uncertainties and vagueness, we
approach to these problems by using different fuzzy
set theory techniques.

Fuzzy logic system can uniformly approximate any
real continuous nonlinear function to an arbitrary
degree of accuracy (Mendel 1995). Terms as ambiguity,
uncertainty and vagueness are used to describe traffic
related events and traffic itself. Zadeh (1973) shows that
vague logical statements enable the formation of algo-
rithms that uses vague data to derive vague inferences.
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Pappis and Mamdani (1977) are among the first ones to
solve a practical traffic and transportation problem using
fuzzy logic. Nakatsuyama, Nagahashi, and Nishizuka
(1984), Sugeno and Nishida (1985), Sasaki and Akiyama
(1986, 1987, 1988) solve complex traffic and transporta-
tion problems indicating the great potential of using
fuzzy set theory techniques.

Fuzzy logic theory is based on a premise that the key
elements of human thinking are not numbers, but rather
labels of fuzzy sets. In other words, the pervasiveness of
fuzziness in human thought processes suggests that
much of the logic behind human reasoning is not the
traditional two or multivalued logic, but a logic with
fuzzy truths, fuzzy connectives and fuzzy rules of infer-
ence (Zadeh 1973). Therefore, fuzzy logic, fuzzy sets and
fuzzy inference methods provide means for the manip-
ulation of vague and imprecise concepts. We can forma-
lize these by stating X to be a non-empty set. A fuzzy set
Ain X is characterized by its membership function:

HAX — [0, 1]

and pA(x) is interpreted as the degree of membership of
element x in fuzzy set A for each x € X. The degree to
which the statement ‘x is A’ is true is defined as the degree
of membership of x in A (Fullér and Zimmermann 1993).
Fuzzy set here is seen as an extension of the classical
(crisp) set. In contrast to crisp sets, where element either
belong or does not belong to the set, fuzzy set can con-
tain elements with degree of membership between com-
pletely belonging to the set to completely not belonging
to the set. In other words, fuzzy logic is capable of hand-
ling the concept of, so called, partial truth. That is, the
truth with values between completely true and completely
false. There are two main terms related with fuzzy logic
modelling approach that we wish to discuss further -
membership functions and fuzzy inference process.
Membership function curves are used to define if the
elements of input space belong/do not belong, and to
which degree of membership do they belong/not belong
to a fuzzy set by assigning each element with the corre-
sponding membership value in a closed unit interval [0-1].
Generally, there are five common shapes of membership
functions: triangular, trapezoidal, Gaussian, generalized bell
and sigmoidal. Regardless of the shape, a single member-
ship function may only define one fuzzy set. Usually, more
than one are used to describe a single input variable.
Now, the question is how can we utilize a fuzzy
inference approach in traffic congestion detection?
Fuzzy inference is the process of formulating the map-
ping from a given input to an output using fuzzy logic
(Fuller and Zimmermann 1993). The process itself
involves several phases — defining and fuzzyfying input
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parameters, applying fuzzy rules and operators, applying
implication method, applying aggregation method and
defuzzification (if necessary). There are two main types
of fuzzy inference systems — Mamdani and Suegeno
type, proposed by Mamdani and Assilian (1975) and
Sugeno (1985), respectively. These two vary mainly in
the way how outputs are determined. Mamdani’s
method was among the first control systems built
using fuzzy set theory. It was proposed in 1975 by
Ebrahim Mamdani (Mamdani 1975) as an attempt to
control a steam engine and boiler combination by
synthesizing a set of linguistic control rules obtained
from experienced human operators. Mamdani’s effort is
based on Zadeh (1973) paper on fuzzy algorithms for
complex systems and decision processes. On the other
side, Sugeno type systems are used to model any infer-
ence system in which the output membership functions
are either linear or constant. This system enhances the
efficiency of the defuzzification process due to the sim-
plified computational requirements. Rather than inte-
grating across the two-dimensional function (as seen in
Mamdani), the system uses the weighted average of
data points to find the centroid. Mamdani’s fuzzy infer-
ence method is currently the most commonly utilized
fuzzy methodology.

Defining input parameters is a challenging task. It
involves both knowledge and experience in the specific
field of interest. The first step after defining input vari-
ables is the transformation of the crisp numerical values
of selected input variables, through membership func-
tions, into membership degrees of the fuzzy set. The
only condition a membership function has to satisfy is
that it must be on the [0-1] interval. The simplest, but
still most commonly used, membership function is the
triangular function or in some specific cases, one could
use more ‘exotic’ membership functions, such as a
Gaussian, sigmoidal or polynomial function. It is often
the case that the fuzzy inference system contains more
than one input variable. In fuzzy inference process, it is
necessary to establish a mechanism, which indicates
how to project input variables onto output space. This
is done by specifying if-then fuzzy rules. A single fuzzy
if-then rule follows the form:

If xis A, Then y is B

The first if part is defined as the antecedent, where x is
input variable. The rest, then part is defined as the con-
sequent, and y is output variable. Both A and B are
linguistic values which enables this form of conditional
statement to work as concordant with human judgement.
The antecedent is usually defined with more than one
fuzzy sets. To combine these membership values and

obtain unique resulting value, we apply fuzzy operators.
The most common used operators are AND and OR, which
apply function min and function max as connectors of
previously specified linguistic variables. The consequent
part of the ‘if-then’ rule is another fuzzy linguistic set
defined by the corresponding membership function. In
general, interpreting an ‘if-then’ rule involves evaluating
the antecedent and applying that result to the conse-
quent. In practice, the common way to modify the output
fuzzy set is, so called truncation method, which works on
behalf of standard min operator. The output of each if-
then rule is a fuzzy set. In other words, the aggregation is
the process by which the fuzzy sets that represent the
outputs of each rule are combined into a single fuzzy set.
Different methods are applicable for aggregation opera-
tion (e.g. max, sum, probabilistic or) but commonly used
one is max (maximum of all inputs). After the aggregation
process, generated fuzzy sets for each output variable
might need de-fuzzification. Among many existing meth-
ods, centroid method (it finds the centroid of two-dimen-
sional function) proposed by Sugeno (1985) and Lee
(1990) is most commonly applied.

Fuzzy inference model for detecting traffic
congestion levels

Can we use subjective knowledge by applying linguistic
rules to model real traffic and indicate congestion? To
test this, we are utilizing the Mobile Century (Herrera et
al. 2010) data, which was collected on 8 February 2008
on Interstate 880, as part of a joint UC Berkeley—Nokia
project. The California Department of Transportation
funded it to support the exploration of uses of GPS
enabled phones to monitor traffic. In addition to the
cell phone GPS data, two additional data sources are
available for the experiment site. Inductive loop detector
data obtained through the Freeway Performance
Measurement System (PeMS), and travel time data
obtained through vehicle re-identification using high-
resolution video data are included with this release. For
our analyses, we use the Inductive Loop Detector Data
only (Table 1). Twenty-seven stations collect flow and
occupancy data for each lane every 30 seconds. We use a
subset of the dataset with the time interval between
6pm and 9pm.

Table 1. Description of the data.

pems_id Vehicle Detector Station ID of the loop detector station in the
PeMS database

Approximate latitude and longitude of the loop detector
stations

Flows Vehicle count per lane over 30 second period

Occs Occupancy of the sensor per lane over a 30 second period

lat, lon
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Figure 1. The stretch of highway | 880 at which the mobile
century experiment took place, with road segments and loca-
tions of inductive loop detectors.

Total length of the observed highway segment is 18
km. Figure 1 shows the area of interest (I 880 highway),
with road segments and locations of inductive loop
detector stations. We divide the highway stretch on six
segments and calculate the average level of congestion
at each segment during the time interval between 6pm
and 9pm. The road segments are not of the same length,
but rather follow the constitution of detector loops. The
segment ends before the highway entrance, or starts
after exit, depending on where the station is placed.
Additionally, we observe congestion behaviour in each
of four lanes individually.

The first step in building our fuzzy inference model is
to specify models’ both input and output parameters.
We choose to use two input parameters (traffic flow and
density) and one output (level of congestion). Flow
refers to the number of vehicles that passes a certain
cross section per time unit (in this case 30 seconds’
period). The data, for all four lanes, is obtained from
loop detector stations and for this purpose used in its
original form. Density represents number of cars passing
through a specific location (latitude and longitude of the
Loop Detector Stations on the highway | 880, direction
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Northbound) at the specific time interval (here time
interval equals 30 seconds). Since our dataset does not
provide information about density, we calculate traffic
density using data coming from traffic detectors. If we
assume that all vehicles are of the same length, we get a
relation between relative occupancy (b) and density (k):

b =L"k )

where L is the length of the vehicles (we use length of 4
m as a standard). As for the output parameter, level of
congestion we define it in the first step as well, while
more attention is given to it in further steps.

In the second step, we fuzzyfy both input and one
output parameters by assigning them seven member-
ship functions. For all input and output parameters, six
full-triangle membership functions describe the middle
range of the universe of discourse and one half triangle
membership function represents the end of the domain
of discourse, respectively. These neighbouring member-
ship functions overlap with each other by 20-50%. The
input parameter — Flow - is assigned with the following
linguistic variables: Free Flow, Reasonably Free Flow,
Stable Flow, Unstable Flow, Near-congestion Flow,
Congested Flow and Extremely Congested Flow. The
input parameter — Density - is fuzzyfied as: Very Low
Density, Low Density, Medium Density, High Density, Very
High Density, Extreme Density and Over Extreme Density.
The output parameter — Level of Congestion - (calcu-
lated for each road segment and lane individually) is also
fuzzyfied with seven linguistic variables. Table 2 shows
the interpretation of each individual level of congestion.

In the third step, we combine our previously fuzzyi-
fied inputs using if-then fuzzy rules. Linguistic informa-
tion (such as free flow and moderate density) are
connected with AND operator meaning that minimum
condition has to be met in order for conditional if state-
ment to be fulfilled. Each rule combination is evaluated
parallel, applying a minimum implication operator,
which truncates the output fuzzy set. There are thirty-
one ‘if-then’ rule combinations in total. Selected subset
of rules is listed in Table 3. In order to obtain the decision
based on all rules output, the outputs need to be further
combined (aggregation step). We use maximum aggre-
gation operator to combine fuzzy outputs of each

Table 2. Fuzzy inference model output parameter (level of
congestion) interpretation set-up.

LoC1 Completely Congestion Free
LoC 2 Congestion Free

LoC 3 Stable

LoC 4 Unstable

LoC 5 Near Congestion

LoC 6 Congestion

LoC 7 Severe Congestion
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Table 3. Fuzzy if-then rules with AND operator.
IF AND THEN
Density is Very Low LOC is LOC1

Flow is Free Flow

Flow is Free Flow Density is Low LOC is LOC2
Flow is Stable Flow Density is Low LOC is LOC2
Flow is Stable Flow Density is High LOC is LOC4
Flow is Unstable Flow Density is High LOC is LOC5

Flow is Congested Flow
Flow is Heavy Congested Flow

Density is Moderate LOC is LOC4
Density is Extreme  LOC is LOC7

individual rule and obtain single fuzzy set output. This
aggregated output fuzzy set is at the same time input
parameter for the de-fuzzification process. We choose
centroid de-fuzzification method that gives us the aver-
age of the maximum value of the output set.

A schematic view of our proposed fuzzy inference
model is shown in Figure 2. The figure shows the structure
of the model, with input parameters, assigned linguistic
variables to our crisp inputs, applied fuzzy rules and opera-
tors, chosen implication and aggregation method as well
as calculated value of congestion as a defuzzified output.

In the fourth and final step, we run our model with all
specified parameters and export the results, separately for
all four lanes. This results in particular values for flow,
density and level of congestion. Table 4 shows the subset
of the obtained results. It is important to note that the closer
the value to zero, the less congested the segment is and
vice versa — the closer to one, the more congested it gets.

Based on these outputs, we are able to observe traffic
behaviour at the small segment of the highway | 880,
direction Northbound where the experiment took place.
The maps depicted in Figure 3 show the detected levels of
congestion at the segmented highway section, in each lane
separately.

We notice that detected levels of congestion do not
differ a lot among each other. There is a smooth

Input parameters

Fuzzyfication of input

parameters

Flow

Free Flow, Reasonably Free Flow,

Stable Flow, Unstable Flow, Con-

Table 4. Table view of the fuzzy inference model input variables
(flow and density) and output variable (level of congestion)
where levels of congestion closer to 0 indicate congestion free
zones and closer to 1 severe congestion zones.

Flow Density Level of Congestion
1 17.2 0.65

14 389 0.9

14 426 0.9

9 107.4 0.5

transition from stable flow to noticeable congestion in
all four lanes (south—east to north-west direction). Lane
1 has slightly lower detected Cls, compared to the rest
three lanes. Additionally, lane 4 has an interesting
decrease in traffic flow from segment 5 to segment 6
jumping from extreme congestion to unstable flow.

Congestion observation within segments shows similar
pattern, with mostly near congestion to congested levels.
Somewhat different are segment 1 at lane 1 and segment 6
at lane 4, which show rather stable flows. We observe the
behaviour and occurrence of the traffic congestion on an
hourly level (namely 6-7pm, 7-8pm, 8-9pm). The results
revile that there is no evident difference in congestion
behaviour compared to the three hour period (6-9pm).
Detected levels of congestion on an hourly level show
similar pattern that we already observe in Figure 3. All
lanes have smooth transition between near to congestion
and congestion condition.

Discussion and conclusions - effectiveness of a
fuzzy inference model

After defining input variables, we need to calculate the
traffic density values from the row data sample. Since
our data contains the information of relative occupancy
at the specific location, we are able to derive the

Density

Very Low Density, Low Density,

Medium Density, High Density, etc.

Flow is Free AND Density is High

Applying fuzzy rules IF
and operators
Applying min THEN

implication method

Applying max aggrega-
tion method and de-

fuzzificaton of fuzzy

Flow is Congested AND Density is High

LOC is No Congestion
LOC is Extremely Congested

Level of Congestion

Figure 2. Fuzzy inference model with two input variables (flow and density of the vehicles) and one output (level of congestion).
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Figure 3. Levels of congestion detected between 6pm and 9pm
on 8 February 2008, stretch of highway | 880 — northbound
direction, in all four lanes.

information about densities (Equation 1.2). We assume,
additionally, that all vehicles have the same length.
However, traffic stream is rarely homogeneous in reality
and vehicles are, usually, not of the same length. Better
solution for finding traffic density using traffic detectors,
would be to measure the flow rate and mean speed, and
then calculate density using the fundamental relation
(Equation 1.1). The second input variable for the fuzzy
inference model is flow. Loop detectors across the study
area provide vehicle counts per lane over 30 second
period. Given that the total flow, expected on the sec-
tion of interest, is approximately 6000 vehicles per hour
(from PeMS) we assume that capacity of each lane is
equal and amounts to 1500 vehicles per hour (~13 vehi-
cles per 30s period). This normalized approach might
cause results misinterpretation, which we cannot detect.

We use two input variables to describe traffic conges-
tion - flow and density. These have proven to be sufficient
for the fuzzy inference model. Most likely more factors
determine this phenomenon and as such needs to be
included into the model. Very often, different weights are
assigned to different parameters, depending on their
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influence on observed event. In our example, we assume
that both flow and density are weighted the same (even
though flow information is provided and density informa-
tion is calculated accounting for homogeneous traffic con-
ditions) which might vary depending on the road
conditions within the case study area. In addition, we
specify arbitrary number of if-then rules based on existing
literature review recommendations and our personal
experience as traffic participants. This step in building a
fuzzy inference model needs to be further investigated and
improved by extending the knowledge about the data and
the study area. Additionally, used data refer only to a very
short time interval between 6pm and 9pm when levels of
traffic congestions are generally smoother than during the
peak hours. The strength of the fuzzy model could be
better observed and evaluated if more data is fed into
the system.

In contrast to traditional methods of detecting traffic
congestion, we use rather approximate approach. Our
fuzzy inference model does not consider nor rely on the
exact numbers to derive conclusions (e.g. the exact count of
vehicles within the road segment implies how congested
specific segment is). On the contrary, this approach is based
on natural language (linguistic information) rules, which are
consistent with the general feelings of traffic participants.
Since more than single rule is applied in the inference
system (multiple rules describe given situation), derived
conclusion is a composite image of traffic conditions.
Additionally, the proposed method is simple to apply and
follows common sense logic. We believe that this viewpoint
presents a promising approach in modelling traffic and
transportation processes because of its flexibility in dealing
with subjectivity, ambiguity, imprecision and uncertainty.
Our goal here is to introduce our own approach, based on
own knowledge and available study data, to be further
improved and utilized for obtaining more accurate traffic
events prognosis. In future steps, we plan to extend the
model with other relevant measures (such as mean speed
or velocity), as well as to improve model performance
through more sophisticated fuzzy rules assignment.
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