290 research outputs found

    Salivary C-Reactive Protein in Hashimoto's Thyroiditis and Subacute Thyroiditis

    Get PDF
    C-reactive protein (CRP), an acute-phase reactant, has been identified as a saliva-based biomarker of inflammation. The objective of the study was to estimate and compare salivary CRP levels in Hashimoto's thyroiditis (HT) and Subacute thyroiditis (SAT). The study included 30 HT patients who presented with clinical features of hypothyroidism, 15 SAT patients who presented with clinical features of hyperthyroidism, and 20 healthy age- and sex-matched euthyroid controls. CRP levels in saliva were estimated using an Enzyme-Linked Immunosorbent Assay method with enhanced sensitivity. In HT, the mean salivary CRP levels did not differ significantly from controls. SAT patients had significantly elevated salivary CRP levels compared to HT patients and controls. The rise in salivary CRP levels in SAT patients conceivably reflects the presence of an inflammatory process. Saliva CRP levels appear to serve as inflammatory markers in SAT patients and may aid their clinical evaluation

    Long-term field metal extraction by pelargonium:phytoextraction efficiency in relation to plant maturity

    Get PDF
    The long length of periods required for effective soil remediation via phytoextraction constitutes a weak point that reduces its industrial use. However, these calculated periods are mainly based on short-term and/or hydroponic controlled experiments. Moreover, only a few studies concern more than one metal, although soils are scarcely polluted by only one element.In this scientific context, the phytoextraction of metals and metalloids (Pb, Cd, Zn, Cu,and As) by Pelargonium was measured after a long-term field experiment. Both bulk and rhizosphere soils were analyzed in order to determine the mechanisms involved in soil-root transfer. First, a strong increase in lead phytoextraction was observed with plant maturity, significantly reducing the length of the period required for remediation. Rhizosphere Pb, Zn, Cu, Cd, and As accumulation was observed (compared to bulk soil), indicating metal mobilization by the plant, perhaps in relation to root activity. Moreover, metal phytoextraction and translocation were found to be a function of the metals’ nature. These results, taken altogether, suggest that Pelargonium could be used as a multi-metal hyperaccumulator under multi-metal soil contamination conditions, and they also provide an interesting insight for improving field phytoextraction remediation in terms of the length of time required, promoting this biological technique

    The Genome of a Southern Hemisphere Seagrass Species (Zostera muelleri).

    Full text link
    Seagrasses are marine angiosperms that evolved from land plants but returned to the sea around 140 million years ago during the early evolution of monocotyledonous plants. They successfully adapted to abiotic stresses associated with growth in the marine environment, and today, seagrasses are distributed in coastal waters worldwide. Seagrass meadows are an important oceanic carbon sink and provide food and breeding grounds for diverse marine species. Here, we report the assembly and characterization of the Zostera muelleri genome, a southern hemisphere temperate species. Multiple genes were lost or modified in Z. muelleri compared with terrestrial or floating aquatic plants that are associated with their adaptation to life in the ocean. These include genes for hormone biosynthesis and signaling and cell wall catabolism. There is evidence of whole-genome duplication in Z. muelleri; however, an ancient pan-commelinid duplication event is absent, highlighting the early divergence of this species from the main monocot lineages

    Bim and Bmf synergize to induce apoptosis in Neisseria gonorrhoeae infection

    Get PDF
    Abstract: Bcl-2 family proteins including the pro-apoptotic BH3-only proteins are central regulators of apoptotic cell death. Here we show by a focused siRNA miniscreen that the synergistic action of the BH3-only proteins Bim and Bmf is required for apoptosis induced by infection with Neisseria gonorrhoeae (Ngo). While Bim and Bmf were associated with the cytoskeleton of healthy cells, they both were released upon Ngo infection. Loss of Bim and Bmf from the cytoskeleton fraction required the activation of Jun-N-terminal kinase-1 (JNK-1), which in turn depended on Rac-1. Depletion and inhibition of Rac-1, JNK-1, Bim, or Bmf prevented the activation of Bak and Bax and the subsequent activation of caspases. Apoptosis could be reconstituted in Bim-depleted and Bmf-depleted cells by additional silencing of antiapoptotic Mcl-1 and Bcl-XL, respectively. Our data indicate a synergistic role for both cytoskeletal-associated BH3-only proteins, Bim, and Bmf, in an apoptotic pathway leading to the clearance of Ngo-infected cells. Author Summary: A variety of physiological death signals, as well as pathological insults, trigger apoptosis, a genetically programmed form of cell death. Pathogens often induce host cell apoptosis to establish a successful infection. Neisseria gonorrhoeae (Ngo), the etiological agent of the sexually transmitted disease gonorrhoea, is a highly adapted obligate human-specific pathogen and has been shown to induce apoptosis in infected cells. Here we unveil the molecular mechanisms leading to apoptosis of infected cells. We show that Ngo-mediated apoptosis requires a special subset of proapoptotic proteins from the group of BH3-only proteins. BH3-only proteins act as stress sensors to translate toxic environmental signals to the initiation of apoptosis. In a siRNA-based miniscreen, we found Bim and Bmf, BH3-only proteins associated with the cytoskeleton, necessary to induce host cell apoptosis upon infection. Bim and Bmf inactivated different inhibitors of apoptosis and thereby induced cell death in response to infection. Our data unveil a novel pathway of infection-induced apoptosis that enhances our understanding of the mechanism by which BH3-only proteins control apoptotic cell death

    Accelerated resolution of inflammation underlies sex differences in inflammatory responses in humans

    Get PDF
    BACKGROUND. Cardiovascular disease occurs at lower incidence in premenopausal females compared with age-matched males. This variation may be linked to sex differences in inflammation. We prospectively investigated whether inflammation and components of the inflammatory response are altered in females compared with males. METHODS. We performed 2 clinical studies in healthy volunteers. In 12 men and 12 women, we assessed systemic inflammatory markers and vascular function using brachial artery flow-mediated dilation (FMD). In a further 8 volunteers of each sex, we assessed FMD response to glyceryl trinitrate (GTN) at baseline and at 8 hours and 32 hours after typhoid vaccine. In a separate study in 16 men and 16 women, we measured inflammatory exudate mediators and cellular recruitment in cantharidin-induced skin blisters at 24 and 72 hours. RESULTS. Typhoid vaccine induced mild systemic inflammation at 8 hours, reflected by increased white cell count in both sexes. Although neutrophil numbers at baseline and 8 hours were greater in females, the neutrophils were less activated. Systemic inflammation caused a decrease in FMD in males, but an increase in females, at 8 hours. In contrast, GTN response was not altered in either sex after vaccine. At 24 hours, cantharidin formed blisters of similar volume in both sexes; however, at 72 hours, blisters had only resolved in females. Monocyte and leukocyte counts were reduced, and the activation state of all major leukocytes was lower, in blisters of females. This was associated with enhanced levels of the resolving lipids, particularly D-resolvin. CONCLUSIONS. Our findings suggest that female sex protects against systemic inflammation-induced endothelial dysfunction. This effect is likely due to accelerated resolution of inflammation compared with males, specifically via neutrophils, mediated by an elevation of the D-resolvin pathway. TRIAL REGISTRATION. ClinicalTrials.gov NCT01582321 and NRES: City Road and Hampstead Ethics Committee: 11/LO/2038. FUNDING. The authors were funded by multiple sources, including the National Institute for Health Research, the British Heart Foundation, and the European Research Council

    The impacts of environmental warming on Odonata: a review

    Get PDF
    Climate change brings with it unprecedented rates of increase in environmental temperature, which will have major consequences for the earth's flora and fauna. The Odonata represent a taxon that has many strong links to this abiotic factor due to its tropical evolutionary history and adaptations to temperate climates. Temperature is known to affect odonate physiology including life-history traits such as developmental rate, phenology and seasonal regulation as well as immune function and the production of pigment for thermoregulation. A range of behaviours are likely to be affected which will, in turn, influence other parts of the aquatic ecosystem, primarily through trophic interactions. Temperature may influence changes in geographical distributions, through a shifting of species' fundamental niches, changes in the distribution of suitable habitat and variation in the dispersal ability of species. Finally, such a rapid change in the environment results in a strong selective pressure towards adaptation to cope and the inevitable loss of some populations and, potentially, species. Where data are lacking for odonates, studies on other invertebrate groups will be considered. Finally, directions for research are suggested, particularly laboratory studies that investigate underlying causes of climate-driven macroecological patterns

    Diagnosis of second breast cancer events after initial diagnosis of early stage breast cancer

    Get PDF
    To examine whether there are any characteristics of women or their initial tumors that might be useful for tailoring surveillance recommendations to optimize outcomes. We followed 17,286 women for up to 5 years after an initial diagnosis of ductal carcinoma in situ (DCIS) or early stage (I/II) invasive breast cancer diagnosed between 1996 and 2006. We calculated rates per 1,000 women years of recurrences and second breast primaries relative to demographics, risk factors, and characteristics of initial diagnosis: stage, treatment, mode of initial diagnosis. Nearly 4% had a second breast cancer event (314 recurrences and 344 second breast primaries). Women who used adjuvant hormonal therapy or were ≥80 years had the lowest rates of second events. Factors associated with higher recurrence and second primary rates included: initial DCIS or stage IIB, estrogen/progesterone receptor-negative, younger women (<50 years). Women with a family history or greater breast density had higher second primary rates, and women who received breast conserving surgery without radiation had higher recurrence rates. Roughly one-third of recurrences (37.6%) and second primaries (36.3%) were not screen-detected. Initial mode of diagnosis was a predictor of second events after adjusting for age, stage, primary treatment, and breast density. A recent negative mammogram should not falsely reassure physicians or women with new breast symptoms or changes because one-third of second cancers were interval cancers. This study does not provide any evidence in support of changing surveillance intervals for different subgroups

    Neisseria meningitidis Differentially Controls Host Cell Motility through PilC1 and PilC2 Components of Type IV Pili

    Get PDF
    Neisseria meningitidis is a strictly human pathogen that has two facets since asymptomatic carriage can unpredictably turn into fulminant forms of infection. Meningococcal pathogenesis relies on the ability of the bacteria to break host epithelial or endothelial cellular barriers. Highly restrictive, yet poorly understood, mechanisms allow meningococcal adhesion to cells of only human origin. Adhesion of encapsulated and virulent meningococci to human cells relies on the expression of bacterial type four pili (T4P) that trigger intense host cell signalling. Among the components of the meningococcal T4P, the concomitantly expressed PilC1 and PilC2 proteins regulate pili exposure at the bacterial surface, and until now, PilC1 was believed to be specifically responsible for T4P-mediated meningococcal adhesion to human cells. Contrary to previous reports, we show that, like PilC1, the meningococcal PilC2 component is capable of mediating adhesion to human ME180 epithelial cells, with cortical plaque formation and F-actin condensation. However, PilC1 and PilC2 promote different effects on infected cells. Cellular tracking analysis revealed that PilC1-expressing meningococci caused a severe reduction in the motility of infected cells, which was not the case when cells were infected with PilC2-expressing strains. The amount of both total and phosphorylated forms of EGFR was dramatically reduced in cells upon PilC1-mediated infection. In contrast, PilC2-mediated infection did not notably affect the EGFR pathway, and these specificities were shared among unrelated meningococcal strains. These results suggest that meningococci have evolved a highly discriminative tool for differential adhesion in specific microenvironments where different cell types are present. Moreover, the fine-tuning of cellular control through the combined action of two concomitantly expressed, but distinctly regulated, T4P-associated variants of the same molecule (i.e. PilC1 and PilC2) brings a new model to light for the analysis of the interplay between pathogenic bacteria and human host cells
    corecore