36 research outputs found

    Investigating violence against _Accredited Social Health Activists_ (ASHAs): a mixed methods study from rural North Karnataka, India

    Get PDF
    # Background Accredited Social Health Activists (ASHAs) are female community health workers who primarily work to improve local reproductive, maternal, neonatal, and child health across India. As ASHAs often hail from patriarchal environments and are positioned at the bottom of the healthcare hierarchy, they are vulnerable to experiencing different forms of violence from the various individuals that they interact with. There is a gap in knowledge about the violence ASHAs experience. The purpose of this study was to assess the working condition of ASHAs, the extent and types of violence they experienced, and the corresponding perpetrators of this violence in two districts of Northern Karnataka. # Methods Using a mixed methods approach, we first surveyed 396 ASHAs to characterize their experiences of violence. We then conducted in-depth interviews with 16 ASHAs to elaborate on survey findings. Data was analyzed using quantitative prevalence statistics and qualitative thematic analysis. # Results The majority of ASHAs reported economic (88%) or emotional violence (73%), while many ASHAs reported sexual (32%) or physical violence (26%). ASHAs reported high levels of economic violence from their beneficiaries and their beneficiaries’ families (64%), emotional violence from their co-workers (44%), and physical and sexual violence from their husbands (17% and 12% respectively). Mixed methods findings revealed that violence was often rooted from their low positioning on the healthcare hierarchy, a lack of respect from community members, and limited autonomy at home. # Conclusions Evidence from this study suggests that violence perpetrated against ASHAs is highly prevalent, diverse in forms, and often arises from the ASHA’s immediate circles. Interventions aiming to decrease violence against ASHA workers requires multi-level approach, with collaborative components empowering ASHAs, sensitizing ASHA families and co-workers, implementing regulations at the health facility level, and increasing community-wide respect for ASHAs and their role in the health care

    Biofunctionalized CdS Quantum Dots: A Case Study on Nanomaterial Toxicity in the Photocatalytic Wastewater Treatment Process

    Get PDF
    The toxic nature of inorganic nanostructured materials as photocatalysts is often not accounted for in traditional wastewater treatment reactions. Particularly, some inorganic nanomaterials employed as photocatalysts may release secondary pollutants in the form of ionic species that leach out due to photocorrosion. In this context, this work is a proof-of-concept study for exploring the environmental toxicity effect of extremely small-sized nanoparticles (2+) metal ions due to the poor photocorrosion stability of CdS is a matter of serious concern. Therefore, in this report, a cost-effective strategy is devised for biofunctionalizing the active surface of CdS QDs by employing tea leaf extract, which is expected to hinder photocorrosion and prevent the leaching of toxic Cd2+ ions. The coating of tea leaf moieties (chlorophyll and polyphenol) over the CdS QDs (referred to hereafter as G-CdS QDs) was confirmed through structural, morphological, and chemical analysis. Moreover, the enhanced visible-light absorption and emission intensity of G-CdS QDs in comparison to that of C-CdS QDs synthesized through a conventional chemical synthesis approach confirmed the presence of chlorophyll/polyphenol coating. Interestingly, the polyphenol/chlorophyll molecules formed a heterojunction with CdS QDs and enabled the G-CdS QDs to exhibit enhanced photocatalytic activity in the degradation of methylene blue dye molecules over C-CdS QDs while effectively preventing photocorrosion as confirmed from cyclic photodegradation studies. Furthermore, detailed toxicity studies were conducted by exposing zebrafish embryos to the as-synthesized CdS QDs for 72 h. Surprisingly, the survival rate of the zebrafish embryos exposed to G-CdS QDs was equal to that of the control, indicating a significant reduction in the leaching of Cd2+ ions from G-CdS QDs in comparison to C-CdS QDs. The chemical environment of C-CdS and G-CdS before and after the photocatalysis reaction was examined by X-ray photoelectron spectroscopy. These experimental findings prove that biocompatibility and toxicity could be controlled by simply adding tea leaf extract during the synthesis of nanostructured materials, and revisiting green synthesis techniques can be beneficial. Furthermore, repurposing the discarded tea leaves may not only facilitate the control of toxicity of inorganic nanostructured materials but can also help in enhancing global environmental sustainability

    Asiatic Acid Inhibits Pro-Angiogenic Effects of VEGF and Human Gliomas in Endothelial Cell Culture Models

    Get PDF
    Malignant gliomas are one of the most devastating and incurable tumors. Sustained excessive angiogenesis by glioma cells is the major reason for their uncontrolled growth and resistance toward conventional therapies resulting in high mortality. Therefore, targeting angiogenesis should be a logical strategy to prevent or control glioma cell growth. Earlier studies have shown that Asiatic Acid (AsA), a pentacyclic triterpenoid, is effective against glioma and other cancer cells; however, its efficacy against angiogenesis remains unknown. In the present study, we examined the anti-angiogenic efficacy of AsA using human umbilical vein endothelial cells (HUVEC) and human brain microvascular endothelial cells (HBMEC). Our results showed that AsA (5–20 µM) inhibits HUVEC growth and induces apoptotic cell death by activating caspases (3 and 9) and modulating the expression of apoptosis regulators Bad, survivin and pAkt-ser473. Further, AsA showed a dose-dependent inhibition of HUVEC migration, invasion and capillary tube formation, and disintegrated preformed capillary network. AsA also inhibited the VEGF-stimulated growth and capillary tube formation by HUVEC and HBMEC. Next, we analyzed the angiogenic potential of conditioned media collected from human glioma LN18 and U87-MG cells treated with either DMSO (control conditioned media, CCM) or AsA 20 µM (AsA20 conditioned media, AsA20CM). CCM from glioma cells significantly enhanced the capillary tube formation in both HUVEC and HBMEC, while capillary tube formation in both endothelial cell lines was greatly compromised in the presence of AsA20CM. Consistent with these results, VEGF expression was lesser in AsA20CM compared to CCM, and indeed AsA strongly inhibited VEGF level (both cellular and secreted) in glioma cells. AsA also showed dose-dependent anti-angiogenic efficacy in Matrigel plug assay, and inhibited the glioma cells potential to attract HUVEC/HBMEC. Overall, the present study clearly showed the strong anti-angiogenic potential of AsA and suggests its usefulness against malignant gliomas

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Antagonistic Efficiency of Aspergillus giganteus as a Biocontrol Agent against Aflatoxigenic Aspergillus flavus Infecting Maize

    No full text
    Aspergillus flavus is a fungal pathogen which infects maize crops and produces aflatoxin thus bringing about huge losses in crop production. Developing biocontrol agents against Aspergillus flavus has been the best strategy for the control of contamination in the fields. The aim of this study was to evaluate the biocontrol potential of Aspergillus giganteus against A. flavus by in vitro coculture studies. The effect of antagonism was studied by varying the carbon and nitrogen sources and under different interacting conditions of pH, temperature and water activities. The conidia production by A. flavus during coculture conditions favourable for antagonism was also assessed. A significantly notable growth inhibition of about 86.1% was brought about by A. giganteus in the coculture, which surrounded the mycelia of pathogenic A. flavus, arresting its growth. A maximum inhibition of 86.1% was observed when sucrose was used as the carbon source and a significantly higher inhibition of 90.93% was seen when beef extract was used as the nitrogen source. Among the different temperatures tested, the highest inhibition was observed at 30°C which was 87.43%. An increasing trend in the inhibitions were seen with decrease in pH and water activity (aw), where, the highest inhibition was 89.75% for pH 6.0 and 94.03% for aw 0.846. Drastic reductions in conidial number and halting of sclerotia production was observed in coculture clearly suggesting that A. giganteus will serve to be a potent and promising biocontrol strain under different environmental conditions

    Adenomatoid odontogenic tumor in the maxillary antrum: A rare case entity

    No full text
    Adenomatoid odontogenic tumor (AOT) is an uncommon benign tumor of odontogenic origin. It occurs in the second decade of life. Females are more commonly affected than males. AOT has a striking tendency to occur in the anterior maxilla; however, very few cases have been reported to occur in the maxillary antrum. This is a case report of a 17-year-old male presented with a large radiolucent lesion associated with the crown of an unerupted canine located in the right maxillary antrum, which was clinically diagnosed as dentigerous cyst. The histopathological examination revealed the presence of AOT
    corecore