3,464 research outputs found
Stable hydrogen and carbon isotope ratios of extractable hydrocarbons in the Murchison meteorite
A fairly fool-proof method to ensure that the compounds isolated from meteorites are truly part of the meteorites and not an artifact introduced by exposure to the terrestrial environment, storage, or handling is presented. The stable carbon and hydrogen isotope ratios in several of the chemical compounds extracted from the Murchison meteorite were measured. The results obtained by studying the amino acids in this meteorite gave very unusual hydrogen and carbon isotope ratios. The technique was extended to the different classes of hydrocarbons and the hydrocarbons were isolated using a variety of separation techniques. The results and methods used in this investigation are described in this two page paper
Supernova Ejecta in the Youngest Galactic Supernova Remnant G1.9+0.3
G1.9+0.3 is the youngest known Galactic supernova remnant (SNR), with an
estimated supernova (SN) explosion date of about 1900, and most likely located
near the Galactic Center. Only the outermost ejecta layers with free-expansion
velocities larger than about 18,000 km/s have been shocked so far in this
dynamically young, likely Type Ia SNR. A long (980 ks) Chandra observation in
2011 allowed spatially-resolved spectroscopy of heavy-element ejecta. We
denoised Chandra data with the spatio-spectral method of Krishnamurthy et al.,
and used a wavelet-based technique to spatially localize thermal emission
produced by intermediate-mass elements (IMEs: Si and S) and iron. The spatial
distribution of both IMEs and Fe is extremely asymmetric, with the strongest
ejecta emission in the northern rim. Fe Kalpha emission is particularly
prominent there, and fits with thermal models indicate strongly oversolar Fe
abundances. In a localized, outlying region in the northern rim, IMEs are less
abundant than Fe, indicating that undiluted Fe-group elements (including 56Ni)
with velocities larger than 18,000 km/s were ejected by this SN. But in the
inner west rim, we find Si- and S-rich ejecta without any traces of Fe, so
high-velocity products of O-burning were also ejected. G1.9+0.3 appears similar
to energetic Type Ia SNe such as SN 2010jn where iron-group elements at such
high free-expansion velocities have been recently detected. The pronounced
asymmetry in the ejecta distribution and abundance inhomogeneities are best
explained by a strongly asymmetric SN explosion, similar to those produced in
some recent 3D delayed-detonation Type Ia models.Comment: 6 pages, 3 figures, submitted to ApJ Letter
Nonuniform Expansion of the Youngest Galactic Supernova Remnant G1.9+0.3
We report measurements of X-ray expansion of the youngest Galactic supernova
remnant, G1.9+0.3, using Chandra observations in 2007, 2009, and 2011. The
measured rates strongly deviate from uniform expansion, decreasing radially by
about 60% along the X-ray bright SE-NW axis from 0.84% +/- 0.06% per yr to
0.52% +/- 0.03% per yr. This corresponds to undecelerated ages of 120-190 yr,
confirming the young age of G1.9+0.3, and implying a significant deceleration
of the blast wave. The synchrotron-dominated X-ray emission brightens at a rate
of 1.9% +/- 0.4% per yr. We identify bright outer and inner rims with the blast
wave and reverse shock, respectively. Sharp density gradients in either ejecta
or ambient medium are required to produce the sudden deceleration of the
reverse shock or the blast wave implied by the large spread in expansion ages.
The blast wave could have been decelerated recently by an encounter with a
modest density discontinuity in the ambient medium, such as found at a wind
termination shock, requiring strong mass loss in the progenitor. Alternatively,
the reverse shock might have encountered an order-of-magnitude density
discontinuity within the ejecta, such as found in pulsating delayed-detonation
Type Ia models. We demonstrate that the blast wave is much more decelerated
than the reverse shock in these models for remnants at ages similar to
G1.9+0.3. Similar effects may also be produced by dense shells possibly
associated with high-velocity features in Type Ia spectra. Accounting for the
asymmetry of G1.9+0.3 will require more realistic 3D Type Ia models.Comment: 6 pages, 4 figures, accepted for publication in ApJ Letters, minor
revision
Intravenous Leiomyomatosis
Leiomyomas are benign tumors arising from smooth muscle of the uterus. Intravenous leiomyomatosis is characterized by intraluminal growth of benign smooth muscle into either venous or lymphatic vessels outside the limits of myoma. It commonly extends into the pelvic veins and manifests asworm-like protrusions of tumor emanating from veins at the parametrial margins of hysterectomy specimen. The tumor can cause life-threatening symptoms if it involves inferior vena cava or right atrium. We report a case of intravenous leiomyomatosis of the uterus managed at our institution.Keywords: Intravenous leiomyomatosis, myometrium, uteru
A translational energy spectrometer to probe interatomic potentials: dissociation dynamics of CO<SUB>2</SUB><SUP>+ </SUP>ions
A new ion translational energy spectrometer has been developed to carry out low-energy, gas-phase ion-molecule collision experiments which aim to probe molecular potential energy surfaces. The collisional technique employed relates small changes in the kinetic energy of a projectile ion after it has undergone collision with a static neutral atom/molecule to changes in the overall potential energy of the collision system; information can be furnished about the interaction potential between the projectile and the target. First measurements are reported of a high resolution target excitation spectrum obtained in 1.8 keV collisions of H2+ ions with N2. New results pertaining to collision-induced dissociation of CO2 + ions are presented and discussed in terms of potential functions of low-lying electronic states of the molecular ion
Evolution of dopant-induced helium nanoplasmas
Two-component nanoplasmas generated by strong-field ionization of doped
helium nanodroplets are studied in a pump-probe experiment using few-cycle
laser pulses in combination with molecular dynamics simulations. High yields of
helium ions and a pronounced, droplet size-dependent resonance structure in the
pump-probe transients reveal the evolution of the dopant-induced helium
nanoplasma. The pump-probe dynamics is interpreted in terms of strong inner
ionization by the pump pulse and resonant heating by the probe pulse which
controls the final charge states detected via the frustration of electron-ion
recombination
The Dynamical Cluster Approximation: Non-Local Dynamics of Correlated Electron Systems
We recently introduced the dynamical cluster approximation(DCA), a new
technique that includes short-ranged dynamical correlations in addition to the
local dynamics of the dynamical mean field approximation while preserving
causality. The technique is based on an iterative self-consistency scheme on a
finite size periodic cluster. The dynamical mean field approximation (exact
result) is obtained by taking the cluster to a single site (the thermodynamic
limit). Here, we provide details of our method, explicitly show that it is
causal, systematic, -derivable, and that it becomes conserving as the
cluster size increases. We demonstrate the DCA by applying it to a Quantum
Monte Carlo and Exact Enumeration study of the two-dimensional Falicov-Kimball
model. The resulting spectral functions preserve causality, and the spectra and
the CDW transition temperature converge quickly and systematically to the
thermodynamic limit as the cluster size increases.Comment: 19 pages, 13 postscript figures, revte
Unlocking the unsustainable rice-wheat system of Indian Punjab: Assessing alternatives to crop-residue burning from a systems perspective
Crop residue burning in Indian Punjab emits particulate matter with detrimental impacts on health, climate and that threaten agricultural production. Though legal and technological barriers to residue burning exist – and alternatives considered more profitable to farmers – residue burning continues. We review black carbon (BC) emissions from residue burning in Punjab, analyse social-ecological processes driving residue burning, and rice and wheat value-chains. Our aims are to a) understand system feedbacks driving agricultural practices in Punjab; b) identify systemic effects of alternatives to residue burning and c) identify companies and financial actors investing in agricultural production in Punjab. We find feedbacks locking the system into crop residue burning. The Government of India has greatest financial leverage and risk in the current system. Corporate stakeholders have little financial incentive to enact change, but sufficient stakes in the value chains to influence change. Agricultural policy changes are necessary to reduce harmful impacts of current practices, but insufficient to bringing about sustainability. Transformative changes will require crop diversification, circular business models and green financing. Intermediating financial institutions setting sustainability conditions on loans could leverage these changes. Sustainability requires the systems perspective we provide, to reconnect production with demand and with supporting environmental conditions
- …