407 research outputs found

    Mechanically driven alloying and grain size changes in nanocrystalline Fe-Cu powders

    Get PDF
    Highly supersaturated nanocrystalline FexCu100-x alloys (10 less-than-or-equal-to x less-than-or-equal-to 95) have been prepared by mechanical alloying of elemental crystalline powders. The development of the microstructure is investigated by x-ray diffraction, differential scanning calorimetry, and transmission electron microscopy. The results are compared with data for ball-milled elemental Fe and Cu powders, samples prepared by inert gas condensation, and sputtered films. The deformation during milling reduces the grain size of the alloys to 6-20 nm. The final grain size of the powders depends on the composition of the material. Single-phase fcc alloys with x less-than-or-equal-to 60 and single-phase bcc alloys with x greater-than-or-equal-to 80 are formed even though the Fe-Cu system exhibits vanishingly small solid solubilities under equilibrium conditions. For 60 less-than-or-equal-to x less-than-or-equal-to 80, fcc and bcc solid solutions coexist. The alloy formation is discussed with respect to the thermodynamic conditions of the material. The role of the large volume fraction of grain boundaries between the nanometer-sized crystals, as well as the influence of internal strains and stored enthalpies introduced by ball milling, is critically assessed

    Effect of hydrogen on the slip resistance of tungsten single crystals

    No full text

    Prospects for Improving Alfalfa Yield Using Genomic- and Phenomic-Based Breeding

    Get PDF
    Alfalfa (Medicago sativa L.) is a perennial outcrossing legume that is cultivated as an important forage crop in many parts of the world. Yield is the most important trait for profitable alfalfa production, yet over the last 30 years yield improvement in California has stagnated. Current breeding methods focus on recurrent phenotypic selection; however, alternatives incorporating genomic- and phenomic-based information may enhance genetic gain and help to address the lack of yield improvement. Here we attempt to increase the yield potential of alfalfa using genomic selection (GS) in combination with high throughput phenotyping (HTP). A total of 193 families from two closely related elite populations were sown in the greenhouse and transplanted into mini sward plots at two locations near Davis, CA in May 2020. The trial was managed as a high-input system under full irrigation. Families were genotyped and phenotyped for biomass yield by mechanical harvest and a combination of drone and tower-based remote sensors across 12 harvests, 3 in the establishment year (2020), 7 in the first full year of production (2021) and 2 in 2022. Alfalfa yields ranged from 13-27 tonnes DM/hectare/year with a number of half-sib families outperforming popular cultivars in the first 2 years of production. Biomass volume predicted from the drone-based cameras had a moderate prediction accuracy with an overall R2 of 0.55. Some individual harvests reached accuracies as high as 0.85. Genotyping resulted in a dataset with 6,838 SNPs. Allele frequencies were used to generate a relationship matrix for GS. Narrow-sense heritability for dry matter yield was 0.31 and the predictive ability of the GS model was 0.15

    Search for instability-induced amorphization in deuterated ErFe2

    Get PDF
    Experimental evidence–in the form of a specific-heat anomaly–for instability-induced amorphization of ErFe2 by hydrogenation was recently reported by Fecht, Fu, and Johnson [Phys. Rev. Lett. 64, 1753 (1990)]. We have attempted to study this anomaly by in situ elastic neutron diffraction and differential-scanning-calorimetry (DSC) measurements of deuterated ErFe2 below and above the reversible, endothermic, λ-shaped enthalpy signal that they found at ∼200 °C. Our combined diffraction and DSC results reveal that the amorphization transition is irreversible, strongly exothermic and occurs only at a significantly higher temperature than that of the specific-heat anomaly. Rather than resulting from an underlying instability of the crystalline phase, amorphization occurs as a by-product of short-range clustering of the Er and Fe atoms, which is driven by the creation of energetically more favorable sites for the deuterium atoms

    Glucocorticoid-Induced TNFR-Related Protein Stimulation Reverses Cardiac Allograft Acceptance Induced by CD40-CD40L Blockade

    Get PDF
    CD40-CD40L blockade has potent immunosuppressive effects in cardiac allograft rejection but is less effective in the presence of inflammatory signals. To better understand the factors that mediate CD40-CD40L blockade-resistant rejection, we studied the effects of stimulation through glucocorticoid-induced TNFR-related protein (GITR), a costimulatory protein expressed by regulatory and effector T cells. Stimulation of CD40−/− or wild-type recipient mice treated with anti-CD40L mAb (WT+anti-CD40L) and with agonistic anti-GITR mAb resulted in cardiac allograft rejection. GITR stimulation did not induce rejection once long-term graft acceptance was established. In vitro, GITR stimulation increased proliferation of effector T cells and decreased regulatory T cell () differentiation in both treatment groups. GITR-stimulated CD40−/− recipients rejected their allografts more rapidly compared to GITR-stimulated WT+anti-CD40L recipients, and this rejection, characterized by a robust Th2 response and significant eosinophilic infiltrate, could be mediated by CD4+ T cells alone. In contrast, both CD4+ and CD8+ T cells were required to induce rejection in GITR-stimulated WT+anti-CD40L-treated recipients, and the pathology of rejection was less severe. Hence, early GITR stimulation could initiate graft rejection despite CD40 deficiency or anti-CD40L mAb treatment, though the recipient response was dependent on the mechanism of CD40-CD40L disruption

    Characterization of defect structures in nanocrystalline materials by X-ray line profile analysis

    Get PDF
    X-ray line profile analysis is a powerful alternative tool for determining dislocation densities, dislocation type, crystallite and subgrain size and size-distributions, and planar defects, especially the frequency of twin boundaries and stacking faults. The method is especially useful in the case of submicron grain size or nanocrystalline materials, where X-ray line broadening is a well pronounced effect, and the observation of defects with very large density is often not easy by transmission electron microscopy. The fundamentals of X-ray line broadening are summarized in terms of the different qualitative breadth methods, and the more sophisticated and more quantitative whole pattern fitting procedures. The efficiency and practical use of X-ray line profile analysis is shown by discussing its applications to metallic, ceramic, diamond-like and polymer nanomaterials

    Genome-scale analysis identifies paralog lethality as a vulnerability of chromosome 1p loss in cancer.

    Get PDF
    Functional redundancy shared by paralog genes may afford protection against genetic perturbations, but it can also result in genetic vulnerabilities due to mutual interdependency1-5. Here, we surveyed genome-scale short hairpin RNA and CRISPR screening data on hundreds of cancer cell lines and identified MAGOH and MAGOHB, core members of the splicing-dependent exon junction complex, as top-ranked paralog dependencies6-8. MAGOHB is the top gene dependency in cells with hemizygous MAGOH deletion, a pervasive genetic event that frequently occurs due to chromosome 1p loss. Inhibition of MAGOHB in a MAGOH-deleted context compromises viability by globally perturbing alternative splicing and RNA surveillance. Dependency on IPO13, an importin-β receptor that mediates nuclear import of the MAGOH/B-Y14 heterodimer9, is highly correlated with dependency on both MAGOH and MAGOHB. Both MAGOHB and IPO13 represent dependencies in murine xenografts with hemizygous MAGOH deletion. Our results identify MAGOH and MAGOHB as reciprocal paralog dependencies across cancer types and suggest a rationale for targeting the MAGOHB-IPO13 axis in cancers with chromosome 1p deletion

    Nanocrystalline materials studied by powder diffraction line profile analysis

    Get PDF
    X-ray powder diffraction is a powerful tool for characterising the microstructure of crystalline materials in terms of size and strain. It is widely applied for nanocrystalline materials, especially since other methods, in particular electron microscopy is, on the one hand tedious and time consuming, on the other hand, due to the often metastable states of nanomaterials it might change their microstructures. It is attempted to overview the applications of microstructure characterization by powder diffraction on nanocrystalline metals, alloys, ceramics and carbon base materials. Whenever opportunity is given, the data provided by the X-ray method are compared and discussed together with results of electron microscopy. Since the topic is vast we do not try to cover the entire field

    Magnetic enhancement of Co0.2_{0.2}Zn0.8_{0.8}Fe2_2O4_4 spinel oxide by mechanical milling

    Full text link
    We report the magnetic properties of mechanically milled Co0.2_{0.2}Zn0.8_{0.8}Fe2_2O4_4 spinel oxide. After 24 hours milling of the bulk sample, the XRD spectra show nanostructure with average particle size ≈\approx 20 nm. The as milled sample shows an enhancement in magnetization and ordering temperature compared to the bulk sample. If the as milled sample is annealed at different temperatures for the same duration, recrystallization process occurs and approaches to the bulk structure on increasing the annealing temperatures. The magnetization of the annealed samples first increases and then decreases. At higher annealing temperature (∼\sim 10000^{0}C) the system shows two coexisting magnetic phases {\it i.e.}, spin glass state and ferrimagnetic state, similar to the as prepared bulk sample. The room temperature M\"{o}ssbauer spectra of the as milled sample, annealed at 3000^{0}C for different durations (upto 575 hours), suggest that the observed change in magnetic behaviour is strongly related with cations redistribution between tetrahedral (A) and octahedral (O) sites in the spinel structure. Apart from the cation redistribution, we suggest that the enhancement of magnetization and ordering temperature is related with the reduction of B site spin canting and increase of strain induced anisotropic energy during mechanical milling.Comment: 14 pages LaTeX, 10 ps figure
    • …
    corecore