493 research outputs found

    Domain Walls in a Tetragonal Chiral p-Wave Superconductor

    Full text link
    Domain walls in a tetragonal chiral p-wave superconductors with broken time reversal symmetry are analyzed in the framework of the Ginsburg-Landau theory. The energy and the jump of the magnetic induction on the wall were determined for different types of walls as functions of the parameters of the Ginzburg-Landau theory and orientation of the domain wall with respect to the crystallographic axes. We discuss implications of the analysis for Sr2RuO4Sr_{2}RuO_{4}, where no stray magnetic fields from domain walls were detected experimentally.Comment: 8 pages, 2 figure

    Vibrating-coil magnetometry of the spin liquid properties of Tb2Ti2O7

    Full text link
    We have explored the spin liquid state in Tb2Ti2O7 with vibrating coil magnetometry down to 0.04 K under magnetic fields up to 5 T. We observe magnetic history dependence below T<0.2T < 0.2K reminiscent of the classical spin ice systems Ho2Ti2O7 and Dy2Ti2O7. The magnetic phase diagram inferred from the magnetization is essentially isotropic, without evidence of magnetization plateaux as anticipated for so-called quantum spin ice, predicted theoretically for [111] when quantum fluctuations renormalize the interactions. Instead, the magnetization for TTT \ll T* agrees semi-quantitatively with the predictions of "all-in/all-out" (AIAO) antiferromagnetism. Taken together this suggests that the spin liquid state in Tb2Ti2O7 is akin to an incipient AIAO-antiferromagnet.Comment: accepted in Physical Review Letter

    Absence of Meissner State and Robust Ferromagnetism in the Superconducting State of UCoGe: Possible Evidence of Spontaneous Vortex State

    Full text link
    We report ac magnetic susceptibility and dc magnetization measurements on the superconducting ferromagnet UCoGe (with superconducting and Curie temperatures of TSC0.5T_{{\rm SC}} \sim 0.5~K and TCurie2.5T_{{\rm Curie}} \sim 2.5~K, respectively). In the normal, ferromagnetic state (TSC<T<TCurieT_{{\rm SC}} < T < T_{{\rm Curie}}), the magnetization curve exhibits a hysteresis loop similar to that of a regular itinerant ferromagnet. Upon lowering the temperature below TSCT_{{\rm SC}}, the spontaneous magnetization is unchanged, but the hysteresis is markedly enhanced. Even deeply inside the superconducting state, ferromagnetism is not completely shielded, and there is no Meissner region, a magnetic field region of H<Hc1H < H_{\rm c1} (a lower critical field). From these results, we suggest that UCoGe is the first material in which ferromagnetism robustly survives in the superconducting state and a spontaneous vortex state without the Meissner state is realized.Comment: 5 pages, 4 figures, to be published in J. Phys. Soc. Jp

    A Transport and Microwave Study of Superconducting and Magnetic RuSr2EuCu2O8

    Get PDF
    We have performed susceptibility, thermopower, dc resistance and microwave measurements on RuSr2EuCu2O8. This compound has recently been shown to display the coexistence of both superconducting and magnetic order. We find clear evidence of changes in the dc and microwave resistance near the magnetic ordering temperature (132 K). The intergranular effects were separated from the intragranular effects by performing microwave measurements on a sintered ceramic sample as well as on a powder sample dispersed in an epoxy resin. We show that the data can be interpreted in terms of the normal-state resistivity being dominated by the CuO2 layers with exchange coupling to the Ru moments in the RuO2 layers. Furthermore, most of the normal-state semiconductor-like upturn in the microwave resistance is found to arise from intergranular transport. The data in the superconducting state can be consistently interpreted in terms of intergranular weak-links and an intragranular spontaneous vortex phase due to the ferromagnetic component of the magnetization arising from the RuO2 planes.Comment: 20 pages including 6 figures in pdf format. To be published in Phys. Rev.

    Annex 2 - Metrics and methodology

    Get PDF
    This annex on methods and metrics provides background information on material used in the Working Group III Contribution to the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (WGIII AR5). The material presented in this annex documents metrics, methods, and common data sets that are typically used across multiple chapters of the report. The annex is composed of three parts: Part I introduces standards metrics and common definitions adopted in the report; Part II presents methods to derive or calculate certain quantities used in the report; and Part III provides more detailed background information about common data sources that go beyond what can be included in the chapters. While this structure may help readers to navigate through the annex, it is not possible in all cases to unambiguously assign a certain topic to one of these parts, naturally leading to some overlap between the parts

    Hysteresis, Avalanches, and Disorder Induced Critical Scaling: A Renormalization Group Approach

    Full text link
    We study the zero temperature random field Ising model as a model for noise and avalanches in hysteretic systems. Tuning the amount of disorder in the system, we find an ordinary critical point with avalanches on all length scales. Using a mapping to the pure Ising model, we Borel sum the 6ϵ6-\epsilon expansion to O(ϵ5)O(\epsilon^5) for the correlation length exponent. We sketch a new method for directly calculating avalanche exponents, which we perform to O(ϵ)O(\epsilon). Numerical exponents in 3, 4, and 5 dimensions are in good agreement with the analytical predictions.Comment: 134 pages in REVTEX, plus 21 figures. The first two figures can be obtained from the references quoted in their respective figure captions, the remaining 19 figures are supplied separately in uuencoded forma

    Chapter 6 - Assessing transformation pathways

    Get PDF
    Stabilizing greenhouse gas (GHG) concentrations at any level will require deep reductions in GHG emissions. Net global CO2 emissions, in particular, must eventually be brought to or below zero. Emissions reductions of this magnitude will require large-scale transformations in human societies, from the way that we produce and consume energy to how we use the land surface. The more ambitious the stabilization goal, the more rapid this transformation must occur. A natural question in this context is what will be the transformation pathway toward stabilization; that is, how do we get from here to there? The topic of this chapter is transformation pathways. The chapter is motivated primarily by three questions. First, what are the near-term and future choices that define transformation pathways including, for example, the goal itself, the emissions pathway to the goal, the technologies used for and sectors contributing to mitigation, the nature of international coordination, and mitigation policies? Second, what are the key decision making outcomes of different transformation pathways, including the magnitude and international distribution of economic costs and the implications for other policy objectives such as those associated with sustainable development? Third, how will actions taken today influence the options that might be available in the future? Two concepts are particularly important for framing any answers to these questions. The first is that there is no single pathway to stabilization of GHG concentrations at any level. Instead, the literature elucidates a wide range of transformation pathways. Choices will govern which pathway is followed. These choices include, among other things, the long-term stabilization goal, the emissions pathway to meet that goal, the degree to which concentrations might temporarily overshoot the goal, the technologies that will be deployed to reduce emissions, the degree to which mitigation is coordinated across countries, the policy approaches used to achieve these goals within and across countries, the treatment of land use, and the manner in which mitigation is meshed with other policy objectives such as sustainable development. The second concept is that transformation pathways can be distinguished from one another in important ways. Weighing the characteristics of different pathways is the way in which deliberative decisions about transformation pathways would be made. Although measures of aggregate economic implications have often been put forward as key deliberative decision making factors, these are far from the only characteristics that matter for making good decisions. Transformation pathways inherently involve a range of tradeoffs that link to other national and policy objectives such as energy and food security, the distribution of economic costs, local air pollution, other environmental factors associated with different technology solutions (e.g., nuclear power, coal-fired carbon dioxide capture and storage (CCS)), and economic competitiveness. Many of these fall under the umbrella of sustainable development. A question that is often raised about particular stabilization goals and transformation pathways to those goals is whether the goals or pathways are "feasible". In many circumstances, there are clear physical constraints that can render particular long-term goals physically impossible. For example, if additinional mitigation beyond that of today is delayed to a large enough degree and carbon dioxide removal (CDR) options are not available (see Section 6.9), a goal of reaching 450 ppm CO2eq by the end of the 21st century can be physically impossible. However, in many cases, statements about feasibility are bound up in subjective assessments of the degree to which other characteristics of particular transformation pathways might influence the ability or desire of human societies to follow them. Important characteristics include economic implications, social acceptance of new technologies that underpin particular transformation pathways, the rapidity at which social and technological systems would need to change to follow particular pathways, political feasibility, and linkages to other national objectives. A primary goal of this chapter is to illuminate these characteristics of transformation pathways

    MESSAGEix-Materials v1.0.0: Representation of Material Flows and Stocks in an Integrated Assessment Model

    Get PDF
    Extracting and processing raw materials into products in industry is a substantial source of CO2 emissions, which currently lacks process detail in many integrated assessment models (IAMs). To broaden the space of climate change mitigation options and to include circular economy and material efficiency measures in IAM scenario analysis, we developed MESSAGEix-Materials module representing material flows and stocks within the MESSAGEix-GLOBIOM IAM framework. With the development of MESSAGEix-Materials, we provide a fully open-source model that can assess different industry decarbonization options under various climate targets for the most energy and emissions-intensive industries: Aluminium, iron and steel, cement, and petrochemicals. We illustrate the model’s operation with a baseline and mitigation (2 degrees) scenario setup and validate base year results for 2020 against historical datasets. We also discuss the industry decarbonization pathways and material stocks of the electricity generation technologies resulting from the new model features

    Enhancing global climate policy ambition towards a 1.5 °C stabilization: a short-term multi-model assessment

    Get PDF
    The Paris Agreement is a milestone in international climate policy as it establishes a global mitigation framework towards 2030 and sets the ground for a potential 1.5 °C climate stabilization. To provide useful insights for the 2018 UNFCCC Talanoa facilitative dialogue, we use eight state-of-the-art climate-energy-economy models to assess the effectiveness of the Intended Nationally Determined Contributions (INDCs) in meeting high probability 1.5 and 2 °C stabilization goals. We estimate that the implementation of conditional INDCs in 2030 leaves an emissions gap from least cost 2 °C and 1.5 °C pathways for year 2030 equal to 15.6 (9.0–20.3) and 24.6 (18.5–29.0) GtCO2eq respectively. The immediate transition to a more efficient and low-carbon energy system is key to achieving the Paris goals. The decarbonization of the power supply sector delivers half of total CO2 emission reductions in all scenarios, primarily through high penetration of renewables and energy efficiency improvements. In combination with an increased electrification of final energy demand, low-carbon power supply is the main short-term abatement option. We find that the global macroeconomic cost of mitigation efforts does not reduce the 2020–2030 annual GDP growth rates in any model more than 0.1 percentage points in the INDC or 0.3 and 0.5 in the 2 °C and 1.5 °C scenarios respectively even without accounting for potential co-benefits and avoided climate damages. Accordingly, the median GDP reductions across all models in 2030 are 0.4%, 1.2% and 3.3% of reference GDP for each respective scenario. Costs go up with increasing mitigation efforts but a fragmented action, as implied by the INDCs, results in higher costs per unit of abated emissions. On a regional level, the cost distribution is different across scenarios while fossil fuel exporters see the highest GDP reductions in all INDC, 2 °C and 1.5 °C scenarios
    corecore