30 research outputs found

    Identification of key receptor residues discriminating human chorionic gonadotropin (Hcg)-and luteinizing hormone (lh)-specific signaling

    Get PDF
    (1) The human luteinizing hormone (LH)/chorionic gonadotropin (hCG) receptor (LHCGR) discriminates its two hormone ligands and differs from the murine receptor (Lhr) in amino acid residues potentially involved in qualitative discerning of LH and hCG. The latter gon-adotropin is absent in rodents. The aim of the study is to identify LHCGR residues involved in hCG/LH discrimination. (2) Eight LHCGR cDNAs were developed, carrying “murinizing” mutations on aminoacidic residues assumed to interact specifically with LH, hCG, or both. HEK293 cells expressing a mutant or the wild type receptor were treated with LH or hCG and the kinetics of cyclic adenosine monophosphate (cAMP) and phosphorylated extracellular signal-regulated ki-nases 1/2 (pERK1/2) activation was analyzed by bioluminescence resonance energy transfer (BRET). (3) Mutations falling within the receptor leucine reach repeat 9 and 10 (LRR9 and LRR10; K225S +T226I and R247T), of the large extracellular binding domain, are linked to loss of hormone-specific induced cAMP increase, as well as hCG-specific pERK1/2 activation, leading to a Lhr-like modulation of the LHCGR-mediated intracellular signaling pattern. These results support the hypothesis that LHCGR LRR domain is the interaction site of the hormone β-L2 loop, which differs between LH and hCG, and might be fundamental for inducing gonadotropin-specific signals. (4) Taken to-gether, these data identify LHCGR key residues likely evolved in the human to discriminate LH/hCG specific binding

    Hurdles and signposts on the road to virtual control groups—A case study illustrating the influence of anesthesia protocols on electrolyte levels in rats

    Get PDF
    Introduction: Virtual Control Groups (VCGs) represent the concept of using historical control data from legacy animal studies to replace concurrent control group (CCG) animals. Based on the data curation and sharing activities of the Innovative Medicine Initiatives project eTRANSAFE (enhancing TRANSlational SAFEty Assessment through Integrative Knowledge Management) the ViCoG working group was established with the objectives of i) collecting suitable historical control data sets from preclinical toxicity studies, ii) evaluating statistical methodologies for building adequate and regulatory acceptable VCGs from historical control data, and iii) sharing those control-group data across multiple pharmaceutical companies. During the qualification process of VCGs a particular focus was put on the identification of hidden confounders in the data sets, which might impair the adequate matching of VCGs with the CCG.Methods: During our analyses we identified such a hidden confounder, namely, the choice of the anesthetic procedure used in animal experiments before blood withdrawal. Anesthesia using CO2 may elevate the levels of some electrolytes such as calcium in blood, while the use of isoflurane is known to lower these values. Identification of such hidden confounders is particularly important if the underlying experimental information (e.g., on the anesthetic procedure) is not routinely recorded in the standard raw data files, such as SEND (Standard for Exchange of Non-clinical Data). We therefore analyzed how the replacement of CCGs with VCGs would affect the reproducibility of treatment-related findings regarding electrolyte values (potassium, calcium, sodium, and phosphate). The analyses were performed using a legacy rat systemic toxicity study consisting of a control and three treatment groups conducted according to pertinent OECD guidelines. In the report of this study treatment-related hypercalcemia was reported. The rats in this study were anesthetized with isoflurane.Results: Replacing the CCGs with VCGs derived from studies comprising both anesthetics resulted in a shift of control electrolyte parameters. Instead of the originally reported hypercalcemia the use of VCG led to fallacious conclusions of no observed effect or hypocalcemia.Discussion: Our study highlights the importance of a rigorous statistical analysis including the detection and elimination of hidden confounders prior to the implementation of the VCG concept

    Titin truncating variants affect heart function in disease cohorts and the general population

    Get PDF
    Titin-truncating variants (TTNtv) commonly cause dilated cardiomyopathy (DCM). TTNtv are also encountered in ~1% of the general population, where they may be silent, perhaps reflecting allelic factors. To better understand TTNtv, we integrated TTN allelic series, cardiac imaging and genomic data in humans and studied rat models with disparate TTNtv. In patients with DCM, TTNtv throughout titin were significantly associated with DCM. Ribosomal profiling in rat showed the translational footprint of premature stop codons in Ttn, TTNtv-position-independent nonsense-mediated degradation of the mutant allele and a signature of perturbed cardiac metabolism. Heart physiology in rats with TTNtv was unremarkable at baseline but became impaired during cardiac stress. In healthy humans, machine-learning-based analysis of high-resolution cardiac imaging showed TTNtv to be associated with eccentric cardiac remodeling. These data show that TTNtv have molecular and physiological effects on the heart across species, with a continuum of expressivity in health and disease

    Titin-truncating variants affect heart function in disease cohorts and the general population

    Get PDF
    Titin-truncating variants (TTNtv) commonly cause dilated cardiomyopathy (DCM). TTNtv are also encountered in ~1% of the general population, where they may be silent, perhaps reflecting allelic factors. To better understand TTNtv, we integrated TTN allelic series, cardiac imaging and genomic data in humans and studied rat models with disparate TTNtv. In patients with DCM, TTNtv throughout titin were significantly associated with DCM. Ribosomal profiling in rat showed the translational footprint of premature stop codons in Ttn, TTNtv-position-independent nonsense-mediated degradation of the mutant allele and a signature of perturbed cardiac metabolism. Heart physiology in rats with TTNtv was unremarkable at baseline but became impaired during cardiac stress. In healthy humans, machine-learning-based analysis of high-resolution cardiac imaging showed TTNtv to be associated with eccentric cardiac remodeling. These data show that TTNtv have molecular and physiological effects on the heart across species, with a continuum of expressivity in health and disease

    An interactive web-tool for molecular analyses links naturally occurring mutation data with three-dimensional structures of the rhodopsin-like glycoprotein hormone receptors

    No full text
    The collection, description and molecular analysis of naturally occurring (pathogenic) mutations are important for understanding the functional mechanisms and malfunctions of biological units such as proteins. Numerous databases collate a huge amount of functional data or descriptions of mutations, but tools to analyse the molecular effects of genetic variations are as yet poorly provided. The goal of this work was therefore to develop a translational web-application that facilitates the interactive linkage of functional and structural data and which helps improve our understanding of the molecular basis of naturally occurring gain- or loss- of function mutations. Here we focus on the human glycoprotein hormone receptors (GPHRs), for which a huge number of mutations are known to cause diseases. We describe new options for interactive data analyses within three-dimensional structures, which enable the assignment of molecular relationships between structure and function. Strikingly, as the functional data are converted into relational percentage values, the system allows the comparison and classification of data from different GPHR subtypes and different experimental approaches. Our new application has been incorporated into a freely available database and website for the GPHRs (http://www.ssfa-gphr.de), but the principle development would also be applicable to other macromolecules

    DataSheet3_Hurdles and signposts on the road to virtual control groups—A case study illustrating the influence of anesthesia protocols on electrolyte levels in rats.docx

    No full text
    Introduction: Virtual Control Groups (VCGs) represent the concept of using historical control data from legacy animal studies to replace concurrent control group (CCG) animals. Based on the data curation and sharing activities of the Innovative Medicine Initiatives project eTRANSAFE (enhancing TRANSlational SAFEty Assessment through Integrative Knowledge Management) the ViCoG working group was established with the objectives of i) collecting suitable historical control data sets from preclinical toxicity studies, ii) evaluating statistical methodologies for building adequate and regulatory acceptable VCGs from historical control data, and iii) sharing those control-group data across multiple pharmaceutical companies. During the qualification process of VCGs a particular focus was put on the identification of hidden confounders in the data sets, which might impair the adequate matching of VCGs with the CCG.Methods: During our analyses we identified such a hidden confounder, namely, the choice of the anesthetic procedure used in animal experiments before blood withdrawal. Anesthesia using CO2 may elevate the levels of some electrolytes such as calcium in blood, while the use of isoflurane is known to lower these values. Identification of such hidden confounders is particularly important if the underlying experimental information (e.g., on the anesthetic procedure) is not routinely recorded in the standard raw data files, such as SEND (Standard for Exchange of Non-clinical Data). We therefore analyzed how the replacement of CCGs with VCGs would affect the reproducibility of treatment-related findings regarding electrolyte values (potassium, calcium, sodium, and phosphate). The analyses were performed using a legacy rat systemic toxicity study consisting of a control and three treatment groups conducted according to pertinent OECD guidelines. In the report of this study treatment-related hypercalcemia was reported. The rats in this study were anesthetized with isoflurane.Results: Replacing the CCGs with VCGs derived from studies comprising both anesthetics resulted in a shift of control electrolyte parameters. Instead of the originally reported hypercalcemia the use of VCG led to fallacious conclusions of no observed effect or hypocalcemia.Discussion: Our study highlights the importance of a rigorous statistical analysis including the detection and elimination of hidden confounders prior to the implementation of the VCG concept.</p

    DataSheet1_Hurdles and signposts on the road to virtual control groups—A case study illustrating the influence of anesthesia protocols on electrolyte levels in rats.docx

    No full text
    Introduction: Virtual Control Groups (VCGs) represent the concept of using historical control data from legacy animal studies to replace concurrent control group (CCG) animals. Based on the data curation and sharing activities of the Innovative Medicine Initiatives project eTRANSAFE (enhancing TRANSlational SAFEty Assessment through Integrative Knowledge Management) the ViCoG working group was established with the objectives of i) collecting suitable historical control data sets from preclinical toxicity studies, ii) evaluating statistical methodologies for building adequate and regulatory acceptable VCGs from historical control data, and iii) sharing those control-group data across multiple pharmaceutical companies. During the qualification process of VCGs a particular focus was put on the identification of hidden confounders in the data sets, which might impair the adequate matching of VCGs with the CCG.Methods: During our analyses we identified such a hidden confounder, namely, the choice of the anesthetic procedure used in animal experiments before blood withdrawal. Anesthesia using CO2 may elevate the levels of some electrolytes such as calcium in blood, while the use of isoflurane is known to lower these values. Identification of such hidden confounders is particularly important if the underlying experimental information (e.g., on the anesthetic procedure) is not routinely recorded in the standard raw data files, such as SEND (Standard for Exchange of Non-clinical Data). We therefore analyzed how the replacement of CCGs with VCGs would affect the reproducibility of treatment-related findings regarding electrolyte values (potassium, calcium, sodium, and phosphate). The analyses were performed using a legacy rat systemic toxicity study consisting of a control and three treatment groups conducted according to pertinent OECD guidelines. In the report of this study treatment-related hypercalcemia was reported. The rats in this study were anesthetized with isoflurane.Results: Replacing the CCGs with VCGs derived from studies comprising both anesthetics resulted in a shift of control electrolyte parameters. Instead of the originally reported hypercalcemia the use of VCG led to fallacious conclusions of no observed effect or hypocalcemia.Discussion: Our study highlights the importance of a rigorous statistical analysis including the detection and elimination of hidden confounders prior to the implementation of the VCG concept.</p

    DataSheet5_Hurdles and signposts on the road to virtual control groups—A case study illustrating the influence of anesthesia protocols on electrolyte levels in rats.docx

    No full text
    Introduction: Virtual Control Groups (VCGs) represent the concept of using historical control data from legacy animal studies to replace concurrent control group (CCG) animals. Based on the data curation and sharing activities of the Innovative Medicine Initiatives project eTRANSAFE (enhancing TRANSlational SAFEty Assessment through Integrative Knowledge Management) the ViCoG working group was established with the objectives of i) collecting suitable historical control data sets from preclinical toxicity studies, ii) evaluating statistical methodologies for building adequate and regulatory acceptable VCGs from historical control data, and iii) sharing those control-group data across multiple pharmaceutical companies. During the qualification process of VCGs a particular focus was put on the identification of hidden confounders in the data sets, which might impair the adequate matching of VCGs with the CCG.Methods: During our analyses we identified such a hidden confounder, namely, the choice of the anesthetic procedure used in animal experiments before blood withdrawal. Anesthesia using CO2 may elevate the levels of some electrolytes such as calcium in blood, while the use of isoflurane is known to lower these values. Identification of such hidden confounders is particularly important if the underlying experimental information (e.g., on the anesthetic procedure) is not routinely recorded in the standard raw data files, such as SEND (Standard for Exchange of Non-clinical Data). We therefore analyzed how the replacement of CCGs with VCGs would affect the reproducibility of treatment-related findings regarding electrolyte values (potassium, calcium, sodium, and phosphate). The analyses were performed using a legacy rat systemic toxicity study consisting of a control and three treatment groups conducted according to pertinent OECD guidelines. In the report of this study treatment-related hypercalcemia was reported. The rats in this study were anesthetized with isoflurane.Results: Replacing the CCGs with VCGs derived from studies comprising both anesthetics resulted in a shift of control electrolyte parameters. Instead of the originally reported hypercalcemia the use of VCG led to fallacious conclusions of no observed effect or hypocalcemia.Discussion: Our study highlights the importance of a rigorous statistical analysis including the detection and elimination of hidden confounders prior to the implementation of the VCG concept.</p

    DataSheet2_Hurdles and signposts on the road to virtual control groups—A case study illustrating the influence of anesthesia protocols on electrolyte levels in rats.docx

    No full text
    Introduction: Virtual Control Groups (VCGs) represent the concept of using historical control data from legacy animal studies to replace concurrent control group (CCG) animals. Based on the data curation and sharing activities of the Innovative Medicine Initiatives project eTRANSAFE (enhancing TRANSlational SAFEty Assessment through Integrative Knowledge Management) the ViCoG working group was established with the objectives of i) collecting suitable historical control data sets from preclinical toxicity studies, ii) evaluating statistical methodologies for building adequate and regulatory acceptable VCGs from historical control data, and iii) sharing those control-group data across multiple pharmaceutical companies. During the qualification process of VCGs a particular focus was put on the identification of hidden confounders in the data sets, which might impair the adequate matching of VCGs with the CCG.Methods: During our analyses we identified such a hidden confounder, namely, the choice of the anesthetic procedure used in animal experiments before blood withdrawal. Anesthesia using CO2 may elevate the levels of some electrolytes such as calcium in blood, while the use of isoflurane is known to lower these values. Identification of such hidden confounders is particularly important if the underlying experimental information (e.g., on the anesthetic procedure) is not routinely recorded in the standard raw data files, such as SEND (Standard for Exchange of Non-clinical Data). We therefore analyzed how the replacement of CCGs with VCGs would affect the reproducibility of treatment-related findings regarding electrolyte values (potassium, calcium, sodium, and phosphate). The analyses were performed using a legacy rat systemic toxicity study consisting of a control and three treatment groups conducted according to pertinent OECD guidelines. In the report of this study treatment-related hypercalcemia was reported. The rats in this study were anesthetized with isoflurane.Results: Replacing the CCGs with VCGs derived from studies comprising both anesthetics resulted in a shift of control electrolyte parameters. Instead of the originally reported hypercalcemia the use of VCG led to fallacious conclusions of no observed effect or hypocalcemia.Discussion: Our study highlights the importance of a rigorous statistical analysis including the detection and elimination of hidden confounders prior to the implementation of the VCG concept.</p
    corecore