441 research outputs found
A dynamical model for quantum memory channels
A dynamical model for quantum channel is introduced which allows one to pass
continuously from the memoryless case to the case in which memory effects are
present. The quantum and classical communication rates of the model are defined
and explicit expression are provided in some limiting case. In this context we
introduce noise attenuation strategies where part of the signals are sacrificed
to modify the channel environment. The case of qubit channel with phase damping
noise is analyzed in details.Comment: 11 pages, 4 figures; minor correction adde
Surface plasmon resonance imaging detection of silver nanoparticle-tagged immunoglobulin
This article is available open access through the publisher’s website at the link below. Copyright @ 2011 The Royal Society.The detection sensitivity of silver nanoparticle (AgNP)-tagged goat immunoglobulin G (gIgG) microarrays was investigated by studying surface plasmon resonance (SPR) images captured in the visible wavelength range with the help of a Kretchmann-configured optical coupling set-up. The functionalization of anti-gIgG molecules on the AgNP surface was studied using transmission electron microscopy, photon correlation measurements and UV–visible absorption spectroscopy. A value of 1.3 × 107 M−1 was obtained for the antibody–antigen binding constant by monitoring the binding events at a particular resonance wavelength. The detection limit of this SPR imaging instrument is 6.66 nM of gIgG achieved through signal enhancement by a factor of larger than 4 owing to nanoparticle tagging with the antibody.The European Commissio
Emission of light through thin silver films via near-field coupling to surface plasmon polaritons
Copyright © 2006 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Applied Physics Letters 88 (2006) and may be found at http://link.aip.org/link/?APPLAB/88/051109/1We show that the emission of light from a dye layer through an adjacent thin silver film is maximal for a silver thickness of approximately 50 nm. This effect is explained as the result of competition between enhancement of the electric field at the metal surface due to the excitation of a surface plasmon-polariton mode, the amount of power coupled to the surface plasmon-polariton mode, and the attenuation of the field transmitted through the silver, all three of which vary with metal thickness. We indicate how these findings may be of relevance in the design of some surface plasmon-polariton-based fluorescence biosensing schemes
Determination of Volatile Organic Compounds by a Novel Polymer Spin-Coated Thin Film and Surface Plasmon Resonance
Here is reported the synthesis, characterization, and volatile organic compound (VOCs) sensing of a 1, 3-dimethyl polyphenylene vinylene polymer. The synthesis was performed by a Witting condensation through the reaction of 1, 4-terphthaldehyde with the phosphonium chloride of meta-xylene. The material was characterized by infrared spectroscopy, elemental analysis, and thermogravimetric analyses. Thin films of the polymer were prepared by spin coating at speeds from 1000 to 5000 rpm. Ultraviolet-visible spectroscopy and surface plasmon resonance were used to characterize the spin coated films. The thicknesses of the films were estimated by fitting the curves and were between 4.5 to 24.5 nm depending on the speed. The refractive index of the new polymer was 1.72. The polymer spin coated films were exposed to volatile organic vapors in order to characterize their sensing properties by surface plasmon resonance as a function of time. The results showed that the new material responded rapidly, sensitively, and reversibly to volatile organic compounds
Gyrotropic impact upon negatively refracting surfaces
Surface wave propagation at the interface between different types of gyrotropic materials and an isotropic negatively refracting medium, in which the relative permittivity and relative permeability are, simultaneously, negative is investigated. A general approach is taken that embraces both gyroelectric and gyromagnetic materials, permitting the possibility of operating in either the low GHz, THz or the optical frequency regimes. The classical transverse Voigt configuration is adopted and a complete analysis of non-reciprocal surface wave dispersion is presented. The impact of the surface polariton modes upon the reflection of both plane waves and beams is discussed in terms of resonances and an example of the influence upon the Goos–Hänchen shift is given
Strongly coupled surface plasmons on thin shallow metallic gratings
Z. Chen, Ian R. Hooper, and J. Roy Sambles, Physical Review B, Vol. 77, article 161405(R) (2008). Copyright © 2008 by the American Physical Society.The optical response of a thin metallic film with shallow corrugations on both surfaces is explored and the structure is found to support a strongly coupled surface plasmon polariton when transverse magnetic radiation is incident in a plane parallel to the grating grooves. Modeling confirms that this strongly excited mode is the short range surface plasmon polariton and its presence is confirmed experimentally in the visible part of the spectrum
Exact Energy-Time Uncertainty Relation for Arrival Time by Absorption
We prove an uncertainty relation for energy and arrival time, where the
arrival of a particle at a detector is modeled by an absorbing term added to
the Hamiltonian. In this well-known scheme the probability for the particle's
arrival at the counter is identified with the loss of normalization for an
initial wave packet. Under the sole assumption that the absorbing term vanishes
on the initial wave function, we show that and , where denotes the mean
arrival time, and is the probability for the particle to be eventually
absorbed. Nearly minimal uncertainty can be achieved in a two-level system, and
we propose a trapped ion experiment to realize this situation.Comment: 8 pages, 2 figure
Simple test for quantum channel capacity
Basing on states and channels isomorphism we point out that semidefinite
programming can be used as a quick test for nonzero one-way quantum channel
capacity. This can be achieved by search of symmetric extensions of states
isomorphic to a given quantum channel. With this method we provide examples of
quantum channels that can lead to high entanglement transmission but still have
zero one-way capacity, in particular, regions of symmetric extendibility for
isotropic states in arbitrary dimensions are presented. Further we derive {\it
a new entanglement parameter} based on (normalised) relative entropy distance
to the set of states that have symmetric extensions and show explicitly the
symmetric extension of isotropic states being the nearest to singlets in the
set of symmetrically extendible states. The suitable regularisation of the
parameter provides a new upper bound on one-way distillable entanglement.Comment: 6 pages, no figures, RevTeX4. Signifficantly corrected version. Claim
on continuity of channel capacities removed due to flaw in the corresponding
proof. Changes and corrections performed in the part proposing a new upper
bound on one-way distillable etanglement which happens to be not one-way
entanglement monoton
Complementarity of Private and Correctable Subsystems in Quantum Cryptography and Error Correction
We make an explicit connection between fundamental notions in quantum
cryptography and quantum error correction. Error-correcting subsystems (and
subspaces) for quantum channels are the key vehicles for contending with noise
in physical implementations of quantum information-processing. Private
subsystems (and subspaces) for quantum channels play a central role in
cryptographic schemes such as quantum secret sharing and private quantum
communication. We show that a subsystem is private for a channel precisely when
it is correctable for a complementary channel. This result is shown to hold
even for approximate notions of private and correctable defined in terms of the
diamond norm for superoperators.Comment: 5 pages, 2 figures, preprint versio
Discovery and Differential Processing of HLA Class II-Restricted Minor Histocompatibility Antigen LB-PIP4K2A-1S and Its Allelic Variant by Asparagine Endopeptidase
Minor histocompatibility antigens are the main targets of donor-derived T-cells after allogeneic stem cell transplantation. Identification of these antigens and understanding their biology are a key requisite for more insight into how graft vs. leukemia effect and graft vs. host disease could be separated. We here identified four new HLA class II-restricted minor histocompatibility antigens using whole genome association scanning. For one of the new antigens, i.e., LB-PIP4K2A-1S, we measured strong T-cell recognition of the donor variant PIP4K2A-1N when pulsed as exogenous peptide, while the endogenously expressed variant in donor EBV-B cells was not recognized. We showed that lack of T-cell recognition was caused by intracellular cleavage by a protease named asparagine endopeptidase (AEP). Furthermore, microarray gene expression analysis showed that PIP4K2A and AEP are both ubiquitously expressed in a wide variety of healthy tissues, but that expression levels of AEP were lower in primary acute myeloid leukemia (AML). In line with that, we confirmed low activity of AEP in AML cells and demonstrated that HLA-DRB1*03:01 positive primary AML expressing LB-PIP4K2A-1S or its donor variant PIP4K2A-1N were both recognized by specific T-cells. In conclusion, LB-PIP4K2A-1S not only represents a novel minor histocompatibility antigen but also provides evidence that donor T-cells after allogeneic stem cell transplantation can target the autologous allelic variant as leukemia-associated antigen. Furthermore, it demonstrates that endopeptidases can play a role in cell type-specific intracellular processing and presentation of HLA class II-restricted antigens, which may be explored in future immunotherapy of AML
- …