9 research outputs found

    Sequencing of the viral UL111a gene directly from clinical specimens reveals variants of HCMV-encoded IL-10 that are associated with altered immune responses to HCMV

    Get PDF
    Human cytomegalovirus (HCMV) is a beta-herpesvirus carried by ~80% of adults worldwide. Acute infections are often asymptomatic in healthy individuals but generate diverse syndromes in neonates, renal transplant recipients (RTR), and people with HIV (PWH). The HCMV gene UL111a encodes a homolog of human interleukin-10 (IL-10) that interacts with the human IL-10 receptor. Deep sequencing technologies were used to sequence UL111a directly from 59 clinical samples from Indonesian PWH and Australian RTR, healthy adults, and neonates. Overall, 93% of samples contained more than one variant of HCMV, as defined by at least one nonsynonymous variation. Carriage of these variants differed between neonates and adults, Australians and Indonesians, and between saliva and blood leukocytes. The variant alleles of N41D and S71Y occurred together in Australian RTR and were associated with higher T-cell responses to HCMV pp65. The variant P122S was associated with lower levels of antibodies reactive with a lysate of HCMV-infected fibroblasts. L174F was associated with increased levels of antibodies reactive with HCMV lysate, immediate-early 1 (IE-1), and glycoprotein B (gB) in Australian RTR and Indonesians PWH, suggesting a higher viral burden. We conclude that variants of UL111a are common in all populations and may influence systemic responses to HCMV

    Sequencing directly from clinical specimens reveals genetic variations in HCMV-Encoded Chemokine Receptor US28 that may influence antibody levels and interactions with human chemokines

    Get PDF
    Human cytomegalovirus (HCMV) is a beta-herpesvirus carried by ∼80% of the world’s population. Acute infections are asymptomatic in healthy individuals but generate diverse syndromes in neonates, solid organ transplant recipients, and HIV-infected individuals. The HCMV gene US28 encodes a homolog of a human chemokine receptor that is able to bind several chemokines and HIV gp120. Deep sequencing technologies were used to sequence US28 directly from 60 clinical samples from Indonesian HIV patients and Australian renal transplant recipients, healthy adults, and neonates. Molecular modeling approaches were used to predict whether nine nonsynonymous mutations in US28 may alter protein binding to a panel of six chemokines and two variants of HIV gp120. Ninety-two percent of samples contained more than one variant of HCMV, as defined by at least one nonsynonymous mutation. Carriage of these variants differed between neonates and adults, Australian and Indonesian samples, and saliva samples and blood leukocytes. Two nonsynonymous mutations (N170D and R267K) were associated with increased levels of immediate early protein 1 (IE-1) and glycoprotein B (gB) HCMV-reactive antibodies, suggesting a higher viral burden. Seven of the nine mutations were predicted to alter binding of at least one ligand. Overall, HCMV variants are common in all populations and have the potential to affect US28 interactions with human chemokines and/or gp120 and alter responses to the virus. The findings relied on deep sequencing technologies applied directly to clinical samples, so the variants exist in vivo

    Whole exome sequencing in foetal akinesia expands the genotype-phenotype spectrum of GBE1 glycogen storage disease mutations

    No full text
    Abstract not availableGianina Ravenscroft, Elizabeth M. Thompson, Emily J. Todd, Kyle S. Yau, Nina Kresoje, Padma Sivadorai, Kathryn Friend, Kate Riley, Nicholas D. Manton, Peter Blumbergs, Michael Fietz, Rachael M. Duff, Mark R. Davis, Richard J. Allcock, Nigel G. Lain

    Sequencing of the Viral UL111a Gene Directly from Clinical Specimens Reveals Variants of HCMV-Encoded IL-10 That Are Associated with Altered Immune Responses to HCMV

    No full text
    Human cytomegalovirus (HCMV) is a beta-herpesvirus carried by ~80% of adults world-wide. Acute infections are often asymptomatic in healthy individuals but generate diverse syndromes in neonates, renal transplant recipients (RTR), and people with HIV (PWH). The HCMV gene UL111a encodes a homolog of human interleukin-10 (IL-10) that interacts with the human IL-10 receptor. Deep sequencing technologies were used to sequence UL111a directly from 59 clinical samples from Indonesian PWH and Australian RTR, healthy adults, and neonates. Overall, 93% of samples contained more than one variant of HCMV, as defined by at least one nonsynonymous variation. Carriage of these variants differed between neonates and adults, Australians and Indonesians, and between saliva and blood leukocytes. The variant alleles of N41D and S71Y occurred together in Australian RTR and were associated with higher T-cell responses to HCMV pp65. The variant P122S was associated with lower levels of antibodies reactive with a lysate of HCMV-infected fibroblasts. L174F was associated with increased levels of antibodies reactive with HCMV lysate, immediate-early 1 (IE-1), and glycoprotein B (gB) in Australian RTR and Indonesians PWH, suggesting a higher viral burden. We conclude that variants of UL111a are common in all populations and may influence systemic responses to HCMV

    Sequencing of the Viral UL111a Gene Directly from Clinical Specimens Reveals Variants of HCMV-Encoded IL-10 That Are Associated with Altered Immune Responses to HCMV

    No full text
    Human cytomegalovirus (HCMV) is a beta-herpesvirus carried by ~80% of adults worldwide. Acute infections are often asymptomatic in healthy individuals but generate diverse syndromes in neonates, renal transplant recipients (RTR), and people with HIV (PWH). The HCMV gene UL111a encodes a homolog of human interleukin-10 (IL-10) that interacts with the human IL-10 receptor. Deep sequencing technologies were used to sequence UL111a directly from 59 clinical samples from Indonesian PWH and Australian RTR, healthy adults, and neonates. Overall, 93% of samples contained more than one variant of HCMV, as defined by at least one nonsynonymous variation. Carriage of these variants differed between neonates and adults, Australians and Indonesians, and between saliva and blood leukocytes. The variant alleles of N41D and S71Y occurred together in Australian RTR and were associated with higher T-cell responses to HCMV pp65. The variant P122S was associated with lower levels of antibodies reactive with a lysate of HCMV-infected fibroblasts. L174F was associated with increased levels of antibodies reactive with HCMV lysate, immediate-early 1 (IE-1), and glycoprotein B (gB) in Australian RTR and Indonesians PWH, suggesting a higher viral burden. We conclude that variants of UL111a are common in all populations and may influence systemic responses to HCMV

    Targeted gene panel use in 2249 neuromuscular patients: the Australasian referral center experience.

    No full text
    To develop, test, and iterate a comprehensive neuromuscular targeted gene panel in a national referral center. We designed two iterations of a comprehensive targeted gene panel for neuromuscular disorders. Version 1 included 336 genes, which was increased to 464 genes in Version 2. Both panels used TargetSeqTM probe-based hybridization for target enrichment followed by Ion Torrent sequencing. Targeted high-coverage sequencing and analysis was performed on 2249 neurology patients from Australia and New Zealand (1054 Version 1, 1195 Version 2) from 2012 to 2015. No selection criteria were used other than referral from a suitable medical specialist (e.g., neurologist or clinical geneticist). Patients were classified into 15 clinical categories based on the clinical diagnosis from the referring clinician. Six hundred and sixty-five patients received a genetic diagnosis (30%). Diagnosed patients were significantly younger that undiagnosed patients (26.4 and 32.5 years, respectively; P = 4.6326E-9). The diagnostic success varied markedly between disease categories. Pathogenic variants in 10 genes explained 38% of the disease burden. Unexpected phenotypic expansions were discovered in multiple cases. Triage of unsolved cases for research exome testing led to the discovery of six new disease genes. A comprehensive targeted diagnostic panel was an effective method for neuromuscular disease diagnosis within the context of an Australasian referral center. Use of smaller disease-specific panels would have precluded diagnosis in many patients and increased cost. Analysis through a centralized laboratory facilitated detection of recurrent, but under-recognized pathogenic variants

    Targeted gene panel use in 2249 neuromuscular patients: the Australasian referral center experience

    No full text
    [Objective] To develop, test, and iterate a comprehensive neuromuscular targeted gene panel in a national referral center.[Methods] We designed two iterations of a comprehensive targeted gene panel for neuromuscular disorders. Version 1 included 336 genes, which was increased to 464 genes in Version 2. Both panels used TargetSeqTM probe‐based hybridization for target enrichment followed by Ion Torrent sequencing. Targeted high‐coverage sequencing and analysis was performed on 2249 neurology patients from Australia and New Zealand (1054 Version 1, 1195 Version 2) from 2012 to 2015. No selection criteria were used other than referral from a suitable medical specialist (e.g., neurologist or clinical geneticist). Patients were classified into 15 clinical categories based on the clinical diagnosis from the referring clinician.[Results] Six hundred and sixty‐five patients received a genetic diagnosis (30%). Diagnosed patients were significantly younger that undiagnosed patients (26.4 and 32.5 years, respectively; P = 4.6326E‐9). The diagnostic success varied markedly between disease categories. Pathogenic variants in 10 genes explained 38% of the disease burden. Unexpected phenotypic expansions were discovered in multiple cases. Triage of unsolved cases for research exome testing led to the discovery of six new disease genes.[Interpretation] A comprehensive targeted diagnostic panel was an effective method for neuromuscular disease diagnosis within the context of an Australasian referral center. Use of smaller disease‐specific panels would have precluded diagnosis in many patients and increased cost. Analysis through a centralized laboratory facilitated detection of recurrent, but under‐recognized pathogenic variants.Research funding: The Fred Liuzzi Foundation, Australian Postgraduate Award, Australian Genomics Health Alliance. Grant Number: GNT1113531, Fundación Alfonso Martín Escudero, Junta de Andalucía‐Consejería de Salud. Grant Number: B‐0005‐2017, Australian National Health and Medical Research Council. Grant Numbers: APP1117510, APP1122952, APP1080587, Western Australian Department of Health Future Health’s WA Merit Award

    Mutations In Klhl40 Are A Frequent Cause Of Severe Autosomal-Recessive Nemaline Myopathy

    No full text
    Nemaline myopathy (NEM) is a common congenital myopathy. At the very severe end of the NEM clinical spectrum are genetically unresolved cases of autosomal-recessive fetal akinesia sequence. We studied a multinational cohort of 143 severe-NEM-affected families lacking genetic diagnosis. We performed whole-exome sequencing of six families and targeted gene sequencing of additional families. We identified 19 mutations in KLHL40 (kelch-like family member 40) in 28 apparently unrelated NEM kindreds of various ethnicities. Accounting for up to 28% of the tested individuals in the Japanese cohort, KLHL40 mutations were found to be the most common cause of this severe form of NEM. Clinical features of affected individuals were severe and distinctive and included fetal akinesia or hypokinesia and contractures, fractures, respiratory failure, and swallowing difficulties at birth. Molecular modeling suggested that the missense substitutions would destabilize the protein. Protein studies showed that KLHL40 is a striated-muscle-specific protein that is absent in KLHL40-associated NEM skeletal muscle. In zebrafish, klhl40a and klhl40b expression is largely confined to the myotome and skeletal muscle, and knockdown of these isoforms results in disruption of muscle structure and loss of movement. We identified KLHL40 mutations as a frequent cause of severe autosomal-recessive NEM and showed that it plays a key role in muscle development and function. Screening of KLHL40 should be a priority in individuals who are affected by autosomal-recessive NEM and who present with prenatal symptoms and/or contractures and in all Japanese individuals with severe NEM.WoSScopu
    corecore