34 research outputs found

    T cell receptor–instructed αβ versus γδ lineage commitment revealed by single-cell analysis

    Get PDF
    αβ and γδ T cell lineages develop in the thymus from a common precursor. It is unclear at which stage of development commitment to these lineages takes place and in which way T cell receptor signaling contributes to the process. Recently, it was demonstrated that strong TCR signals favor γδ lineage development, whereas weaker TCR signals promote αβ lineage fate. Two models have been proposed to explain these results. The first model suggests that commitment occurs after TCR expression and TCR signaling directly instructs lymphocytes to adopt one or the other lineage fate. The second model suggests that commitment occurs before TCR expression and that TCR signaling merely confirms the lineage choice. By tracing the fate of single T cell precursors, this study shows that there is no commitment to either the αβ or γδ lineage before TCR expression and that modulation of TCR signaling in progeny of a single TCR-expressing cell changes lineage commitment

    Lineage Diversion of T Cell Receptor Transgenic Thymocytes Revealed by Lineage Fate Mapping

    Get PDF
    Background: The binding of the T cell receptor (TCR) to major histocompatibility complex (MHC) molecules in the thymus determines fates of TCRαβTCR\alpha\beta lymphocytes that subsequently home to secondary lymphoid tissue. TCR transgenic models have been used to study thymic selection and lineage commitment. Most TCR transgenic mice express the rearranged TCRαβTCR\alpha\beta prematurely at the double negative stage and abnormal TCRαβ populations of T cells that are not easily detected in non-transgenic mice have been found in secondary lymphoid tissue of TCR transgenic mice. Methodology and Principal Findings: To determine developmental pathways of TCR-transgenic thymocytes, we used Cre-LoxP-mediated fate mapping and show here that premature expression of a transgenic TCRαβTCR\alpha\beta diverts some developing thymocytes to a developmental pathway which resembles that of gamma delta cells. We found that most peripheral T cells with the HY-TCR in male mice have bypassed the RORγt-positive CD4+8+CD4^{+}8^{+} (double positive, DP) stage to accumulate either as CD48CD4^{-}8^{-} (double negative, DN) or as CD8α+CD8\alpha^{+} T cells in lymph nodes or gut epithelium. Likewise, DN TCRαβTCR\alpha\beta cells in lymphoid tissue of female mice were not derived from DP thymocytes. Conclusion: The results further support the hypothesis that the premature expression of the TCRαβTCR\alpha\beta can divert DN thymocytes into gamma delta lineage cells

    The TAL1 complex targets the FBXW7 tumor suppressor by activating miR-223 in human T cell acute lymphoblastic leukemia

    Get PDF
    The oncogenic transcription factor TAL1/SCL is aberrantly expressed in 60% of cases of human T cell acute lymphoblastic leukemia (T-ALL) and initiates T-ALL in mouse models. By performing global microRNA (miRNA) expression profiling after depletion of TAL1, together with genome-wide analysis of TAL1 occupancy by chromatin immunoprecipitation coupled to massively parallel DNA sequencing, we identified the miRNA genes directly controlled by TAL1 and its regulatory partners HEB, E2A, LMO1/2, GATA3, and RUNX1. The most dynamically regulated miRNA was miR-223, which is bound at its promoter and up-regulated by the TAL1 complex. miR-223 expression mirrors TAL1 levels during thymic development, with high expression in early thymocytes and marked down-regulation after the double-negative-2 stage of maturation. We demonstrate that aberrant miR-223 up-regulation by TAL1 is important for optimal growth of TAL1-positive T-ALL cells and that sustained expression of miR-223 partially rescues T-ALL cells after TAL1 knockdown. Overexpression of miR-223 also leads to marked down-regulation of FBXW7 protein expression, whereas knockdown of TAL1 leads to up-regulation of FBXW7 protein levels, with a marked reduction of its substrates MYC, MYB, NOTCH1, and CYCLIN E. We conclude that TAL1-mediated up-regulation of miR-223 promotes the malignant phenotype in T-ALL through repression of the FBXW7 tumor suppressor.National Cancer Institute (U.S.) (5P01CA109901)National Cancer Institute (U.S.) (5P01CA68484)National Cancer Institute (U.S.) (1K99CA157951)National Institutes of Health (U.S.). Intramural Research ProgramCenter for Cancer Research (National Cancer Institute (U.S.)
    corecore