26 research outputs found

    Increased Glucose Availability Sensitizes Pancreatic Cancer to Chemotherapy

    Get PDF
    Pancreatic Ductal Adenocarcinoma (PDAC) is highly resistant to chemotherapy. Effective alternative therapies have yet to emerge, as chemotherapy remains the best available systemic treatment. However, the discovery of safe and available adjuncts to enhance chemotherapeutic efficacy can still improve survival outcomes. We show that a hyperglycemic state substantially enhances the efficacy of conventional single- and multi-agent chemotherapy regimens against PDAC. Molecular analyses of tumors exposed to high glucose levels reveal that the expression of GCLC (glutamate-cysteine ligase catalytic subunit), a key component of glutathione biosynthesis, is diminished, which in turn augments oxidative anti-tumor damage by chemotherapy. Inhibition of GCLC phenocopies the suppressive effect of forced hyperglycemia in mouse models of PDAC, while rescuing this pathway mitigates anti-tumor effects observed with chemotherapy and high glucose

    The Technological History of Immunohistochemical Methods and Applications in Clinical Cancer Diagnosis and Research.

    No full text

    Nitrous Oxide Abuse and Vitamin B 12

    No full text

    Identification of RUNX1T1 as a potential epigenetic modifier in small‐cell lung cancer

    No full text
    Small‐cell lung cancer (SCLC) can be subgrouped into common ‘pure’ and rare ‘combined’ SCLC (c‐SCLC). c‐SCLC features a mixed tumor histology of both SCLC and non–small‐cell lung cancer (NSCLC). We performed targeted exome sequencing on 90 patients with SCLC, including two with c‐SCLC, and discovered RUNX1T1 amplification specific to small cell tumors of both patients with c‐SCLC, but in only 2 of 88 ‘pure’ SCLC patients. RUNX1T1 was first identified in the fusion transcript AML1/ETO, which occurs in 12%‐15% of acute myelogenous leukemia (AML). We further show higher expression of RUNX1T1 in the SCLC component of another c‐SCLC tumor by in situ hybridization. RUNX1T1 expression was enriched in SCLC compared with all other cancers, including NSCLC, in both cell lines and tumor specimens, as shown by mRNA level and western blotting. Transcriptomic analysis of hallmark genes decreased by stable RUNX1T1 overexpression revealed a significant change in E2F targets. Validation experiments in multiple lung cancer cell lines showed that RUNX1T1 overexpression consistently decreased CDKN1A (p21) expression and increased E2F transcriptional activity, which is commonly altered in SCLC. Chromatin immunoprecipitation (ChIP) in these overexpressing cells demonstrated that RUNX1T1 interacts with the CDKN1A (p21) promoter region, which displayed parallel reductions in histone 3 acetylation. Furthermore, reduced p21 expression could be dramatically restored by HDAC inhibition using Trichostatin A. Reanalysis of ChIP‐seq data in Kasumi‐1 AML cells showed that knockdown of the RUNX1T1 fusion protein was associated with increased global acetylation, including the CDKN1A (p21) promoter. Thus, our study identifies RUNX1T1 as a biomarker and potential epigenetic regulator of SCLC

    A nonrandomized trial of vitamin D supplementation for Barrett’s esophagus

    No full text
    <div><p>Background</p><p>Vitamin D deficiency may increase esophageal cancer risk. Vitamin D affects genes regulating proliferation, apoptosis, and differentiation and induces the tumor suppressor 15-hydroxyprostaglandin dehydrogenase (PGDH) in other cancers. This nonrandomized interventional study assessed effects of vitamin D supplementation in Barrett’s esophagus (BE). We hypothesized that vitamin D supplementation may have beneficial effects on gene expression including 15-PGDH in BE.</p><p>Methods</p><p>BE subjects with low grade or no dysplasia received vitamin D<sub>3</sub> (cholecalciferol) 50,000 international units weekly plus a proton pump inhibitor for 12 weeks. Esophageal biopsies from normal plus metaplastic BE epithelium and blood samples were obtained before and after vitamin D supplementation. Serum 25-hydroxyvitamin D was measured to characterize vitamin D status. Esophageal gene expression was assessed using microarrays.</p><p>Results</p><p>18 study subjects were evaluated. The baseline mean serum 25-hydroxyvitamin D level was 27 ng/mL (normal ≄30 ng/mL). After vitamin D supplementation, 25-hydroxyvitamin D levels rose significantly (median increase of 31.6 ng/mL, p<0.001). There were no significant changes in gene expression from esophageal squamous or Barrett’s epithelium including 15-PGDH after supplementation.</p><p>Conclusion</p><p>BE subjects were vitamin D insufficient. Despite improved vitamin D status with supplementation, no significant alterations in gene expression profiles were noted. If vitamin D supplementation benefits BE, a longer duration or higher dose of supplementation may be needed.</p></div
    corecore