476 research outputs found
Recommended from our members
Generation of multi-modal dialogue for a net environment
In this paper an architecture and special purpose markup language for simulated affective face-to-face communication is presented. In systems based on this architecture, users will be able to watch embodied conversational agents interact with each other in virtual locations on the internet. The markup language, or Rich Representation Language (RRL), has been designed to provide an integrated representation of speech, gesture, posture and facial animation
Tracing the cryptic Sardic (Ordovician) metamorphism across Alpine Europe: the Krndija region in the Slavonian Mountains, Croatia
Results of a combined petrological, geochemical and geochronological study suggest that metasedimentary rock units in the Krndija region of the Slavonian Mountains, Croatia, were affected by at least three major tectonometamorphic imprints: during the Middle Ordovician (Sardic event), the early Carboniferous (Variscan event), and the Cretaceous (Alpine event). All three metamorphic phases are established by electron microprobe-based in-situ U–Th–Pb dating of monazite grains. The Sardic metamorphic event is additionally confirmed by a precise Lu–Hf garnet-whole-rock isochron age of 466.0 ± 2.3 Ma. Taken together, the data unveil a relatively large and well-preserved piece of the cryptic Sardic orogen in central Krndija, that we name the Kutjevo Zone. A Sardic subduction-related metamorphic event (ca. 540-580 ℃, 8–11 kbar) at ca. 466 Ma is manifested in the mineral paragenesis Ca-rich garnet plus rutile. A low degree of retrograde reequilibration suggests a subsequent fast exhumation. Low-Ca cores in some garnets and staurolite relics record a pre-HP metamorphic event that involves isobaric heating from 570 to 610 ℃ at ~ 7 kbar. We attribute this (so far undated) event to mid-crustal contact metamorphism caused by early Sardic magmatism. Southern parts of Krndija (the Gradište Zone) experienced an (additional?) clockwise PT evolution in Variscan times at ca. 350 Ma. Garnet formed with ilmenite during a PT increase from 580 ℃/5 kbar to 600 ℃/6 kbar and underwent later strong retrograde resorption. Slow Variscan exhumation resulted in andalusite formation at < 550 ℃/ < 3.8 kbar. Penetrative Alpine metamorphism was observed in low-grade phyllites in the north. The lithology and metamorphic history of the Kutjevo Zone is similar to what has been reported from the Sardic Strona-Ceneri Zone in the western Alps. Both areas expose metapelitic (metagreywacke) rocks with a pre-middle Ordovician formation age. These metasedimentary rocks are inter-layered with numerous small amphibolitic units as well as metagranitoids and were likely deposited along the active Gondwana margin, perhaps in a fore-arc position, prior to their subduction during the middle Ordovician. According to recent palaeogeographic reconstructions, both the Kutjevo Zone and the Strona-Ceneri Zone have once resided in an eastern sector of the northern Gondwana margin (i.e., in E-Armorica). We conclude that in the Middle Ordovician, important subduction activities took place in this E-Armorican segment of north Gondwana, which is today exposed in the Alps. The W-Armorican segment of north Gondwana (now exposed in the French, German, and Czech Variscides) had probably already mutated from a (Cadomian) subduction setting to an extensional (transtensional–transpressional) setting by the late Cambrian
Momentum transfer for momentum transfer-free which-path experiments
We analyze the origin of interference disappearance in which-path double
aperture experiments. We show that we can unambiguously define an observable
momentum transfer between the quantum particle and the path detector and we
prove in particular that the so called ``momentum transfer free'' experiments
can be in fact logically interpreted in term of momentum transfer.Comment: to appear in Phys. Rev . A (2006). (7 pages, 2 figures
Generating multimedia presentations: from plain text to screenplay
In many Natural Language Generation (NLG) applications, the output is limited to plain text – i.e., a string of words with punctuation and paragraph breaks, but no indications for layout, or pictures, or dialogue. In several projects, we have begun to explore NLG applications in which these extra media are brought into play. This paper gives an informal account of what we have learned. For coherence, we focus on the domain of patient information leaflets, and follow an example in which the same content is expressed first in plain text, then in formatted text, then in text with pictures, and finally in a dialogue script that can be performed by two animated agents. We show how the same meaning can be mapped to realisation patterns in different media, and how the expanded options for expressing meaning are related to the perceived style and tone of the presentation. Throughout, we stress that the extra media are not simple added to plain text, but integrated with it: thus the use of formatting, or pictures, or dialogue, may require radical rewording of the text itself
Interaction-free measurement and forward scattering
Interaction-free measurement is shown to arise from the forward-scattered
wave accompanying absorption: a "quantum silhouette" of the absorber.
Accordingly, the process is not free of interaction. For a perfect absorber the
forward-scattered wave is locked both in amplitude and in phase. For an
imperfect one it has a nontrivial phase of dynamical origin (``colored
silhouette"), measurable by interferometry. Other examples of quantum
silhouettes, all controlled by unitarity, are briefly discussed.Comment: 4 pages in RevTex + 1 figure in eps; submitted to Phys. Rev. A since
09Jan98; now update
Counterfactual entanglement and nonlocal correlations in separable states
It is shown that the outcomes of measurements on systems in separable mixed
states can be partitioned, via subsequent measurements on a disentangled
extraneous system, into subensembles that display the statistics of entangled
states. This motivates the introduction of the concept of "counterfactual"
entanglement, which can be associated with all separable mixed states including
those that are factorable. This type of entanglement gives rise to a new kind
of postselection-induced Bell inequality violation. The significance of
counterfactual entanglement, and its physical implications, are assessed
Efficient unidirectional nanoslit couplers for surface plasmons
Plasmonics is based on surface plasmon polariton (SPP) modes which can be
laterally confined below the diffraction limit, thereby enabling ultracompact
optical components. In order to exploit this potential, the fundamental
bottleneck of poor light-SPP coupling must be overcome. In established SPP
sources (using prism, grating} or nanodefect coupling) incident light is a
source of noise for the SPP, unless the illumination occurs away from the
region of interest, increasing the system size and weakening the SPP intensity.
Back-side illumination of subwavelength apertures in optically thick metal
films eliminates this problem but does not ensure a unique propagation
direction for the SPP. We propose a novel back-side slit-illumination method
based on drilling a periodic array of indentations at one side of the slit. We
demonstrate that the SPP running in the array direction can be suppressed, and
the one propagating in the opposite direction enhanced, providing localized
unidirectional SPP launching.Comment: 13 pages, 4 figure
Theory of extraordinary optical transmission through subwavelength hole arrays
We present a fully three-dimensional theoretical study of the extraordinary
transmission of light through subwavelength hole arrays in optically thick
metal films. Good agreement is obtained with experimental data. An analytical
minimal model is also developed, which conclusively shows that the enhancement
of transmission is due to tunneling through surface plasmons formed on each
metal-dielectric interfaces. Different regimes of tunneling (resonant through a
''surface plasmon molecule", or sequential through two isolated surface
plasmons) are found depending on the geometrical parameters defining the
system.Comment: 4 pages, 4 figure
High-efficiency quantum interrogation measurements via the quantum Zeno effect
The phenomenon of quantum interrogation allows one to optically detect the
presence of an absorbing object, without the measuring light interacting with
it. In an application of the quantum Zeno effect, the object inhibits the
otherwise coherent evolution of the light, such that the probability that an
interrogating photon is absorbed can in principle be arbitrarily small. We have
implemented this technique, demonstrating efficiencies exceeding the 50%
theoretical-maximum of the original ``interaction-free'' measurement proposal.
We have also predicted and experimentally verified a previously unsuspected
dependence on loss; efficiencies of up to 73% were observed and the feasibility
of efficiencies up to 85% was demonstrated.Comment: 4 pages, 3 postscript figures. To appear in Phys. Rev. Lett;
submitted June 11, 199
Robust plasmon waveguides in strongly-interacting nanowire arrays
Arrays of parallel metallic nanowires are shown to provide a tunable, robust,
and versatile platform for plasmon interconnects, including high-curvature
turns with minimum signal loss. The proposed guiding mechanism relies on gap
plasmons existing in the region between adjacent nanowires of dimers and
multi-wire arrays. We focus on square and circular silver nanowires in silica,
for which excellent agreement between both boundary element method and multiple
multipolar expansion calculations is obtained. Our work provides the tools for
designing plasmon-based interconnects and achieving high degree of integration
with minimum cross talk between adjacent plasmon guides.Comment: 4 pages, 5 figure
- …