1,182 research outputs found

    Comment on "Far-field microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons"

    Full text link
    This is a small comment concerning the work by Smolyaninov et al. in Phys. Rev. Lett.94, 057401 (2005)

    PCI: A Reflective Evaluation Framework for Systems Change

    Get PDF
    Systemic change involves deep shifts in social norms, beliefs, power, and privilege — and seldom, if ever, follows a straightforward, predictable path. Such change also requires incremental, long-term action and evaluation. To better support systemic change, how might a foundation reframe its approach to evaluation? This article explores the interconnected dimensions of the PCI Reflective Evaluation Framework, an approach now in prototype form which is grounded in practical thinking about working within complex social systems. This article focuses on its use in advancing racial equity, describing possible applications to integrate a racial equity lens in unpacking and addressing the complexity of systemic change. The framework is intended to help communities use evaluation to sustain their efforts to achieve racial equity and other systemicchange goals that involve fundamental shifts in the underlying assumptions and values on which a social system is built

    Experimental GHZ Entanglement beyond Qubits

    Full text link
    The Greenberger-Horne-Zeilinger (GHZ) argument provides an all-or-nothing contradiction between quantum mechanics and local-realistic theories. In its original formulation, GHZ investigated three and four particles entangled in two dimensions only. Very recently, higher dimensional contradictions especially in three dimensions and three particles have been discovered but it has remained unclear how to produce such states. In this article we experimentally show how to generate a three-dimensional GHZ state from two-photon orbital-angular-momentum entanglement. The first suggestion for a setup which generates three-dimensional GHZ entanglement from these entangled pairs came from using the computer algorithm Melvin. The procedure employs novel concepts significantly beyond the qubit case. Our experiment opens up the possibility of a truly high-dimensional test of the GHZ-contradiction which, interestingly, employs non-Hermitian operators.Comment: 6+6 pages, 8 figure

    Design of quantum optical experiments with logic artificial intelligence

    Get PDF
    Logic Artificial Intelligence (AI) is a subfield of AI where variables can take two defined arguments, True or False, and are arranged in clauses that follow the rules of formal logic. Several problems that span from physical systems to mathematical conjectures can be encoded into these clauses and solved by checking their satisfiability (SAT). In contrast to machine learning approaches where the results can be approximations or local minima, Logic AI delivers formal and mathematically exact solutions to those problems. In this work, we propose the use of logic AI for the design of optical quantum experiments. We show how to map into a SAT problem the experimental preparation of an arbitrary quantum state and propose a logic-based algorithm, called Klaus, to find an interpretable representation of the photonic setup that generates it. We compare the performance of Klaus with the state-of-the-art algorithm for this purpose based on continuous optimization. We also combine both logic and numeric strategies to find that the use of logic AI significantly improves the resolution of this problem, paving the path to developing more formal-based approaches in the context of quantum physics experiments

    Entanglement by Path Identity

    Get PDF
    Quantum entanglement is one of the most prominent features of quantum mechanics and forms the basis of quantum information technologies. Here we present a novel method for the creation of quantum entanglement in multipartite and high-dimensional systems. The two ingredients are (i) superposition of photon pairs with different origins and (ii) aligning photons such that their paths are identical. We explain the experimentally feasible creation of various classes of multiphoton entanglement encoded in polarization as well as in high-dimensional Hilbert spaces-starting only from nonentangled photon pairs. For two photons, arbitrary high-dimensional entanglement can be created. The idea of generating entanglement by path identity could also apply to quantum entities other than photons. We discovered the technique by analyzing the output of a computer algorithm. This shows that computer designed quantum experiments can be inspirations for new techniques

    Design of quantum optical experiments with logic artificial intelligence

    Get PDF
    Logic artificial intelligence (AI) is a subfield of AI where variables can take two defined arguments, True or False, and are arranged in clauses that follow the rules of formal logic. Several problems that span from physical systems to mathematical conjectures can be encoded into these clauses and be solved by checking their satisfiability (SAT). Recently, SAT solvers have become a sophisticated and powerful computational tool capable, among other things, of solving long-standing mathematical conjectures. In this work, we propose the use of logic AI for the design of optical quantum experiments. We show how to map into a SAT problem the experimental preparation of an arbitrary quantum state and propose a logic-based algorithm, called Klaus, to find an interpretable representation of the photonic setup that generates it. We compare the performance of Klaus with the state-of-the-art algorithm for this purpose based on continuous optimization. We also combine both logic and numeric strategies to find that the use of logic AI improves significantly the resolution of this problem, paving the path to develop more formal-based approaches in the context of quantum physics experiments
    • …
    corecore