288 research outputs found

    Orientation Polarization Spectroscopy: Toward an Atomistic Understanding of Dielectric Relaxation Processes

    Get PDF
    The theory of orientation polarization and dielectric relaxation was developed by P. Debye more than 100 years ago. It is based on approximating a molecule by a sphere having one or more dipole moments. By that the detailed intra- and intermolecular interactions are explicitly not taken into consideration. In this article, the principal limitations of the Debye approximation are discussed. Taking advantage of the molecular specificity of the infrared (IR) spectral range, measurements of the specific IR absorption of the stretching vibration (OH) (at 3370 cm1) and the asymmetric as(CH2) (at 2862.9 cm1) are performed in dependence on the frequency and the strength of external electric fields and at varying temperature. The observed effects are interpreted as caused by orientation polarization of the OH and the adjacent CH2 moieties

    Polyelectrolyte-Compression Forces between Spherical DNA Brushes

    Full text link
    Optical tweezers are employed to measure the forces of interaction within a single pair of DNA-grafted colloids in dependence of the molecular weight of the DNA-chains, and the concentration and valence of the surrounding ionic medium. The resulting forces are short-range and set in as the surface-to-surface distance between the colloidal cores reaches the value of the brush height. The measured force-distance dependence is analyzed by means of a theoretical treatment based on the compression of the chains on the surface of the opposite-lying colloid. Quantitative agreement with the experiment is obtained for all parameter combinations.Comment: 4 pages, 4 figures, 1 table; manuscript submitted to Phys. Rev. Let

    Colloids dragged through a polymer solution: experiment, theory and simulation

    Get PDF
    We present micro-rheological measurments of the drag force on colloids pulled through a solution of lambda-DNA (used here as a monodisperse model polymer) with an optical tweezer. The experiments show a violation of the Stokes-Einstein relation based on the independently measured viscosity of the DNA solution: the drag force is larger than expected. We attribute this to the accumulation of DNA infront of the colloid and the reduced DNA density behind the colloid. This hypothesis is corroborated by a simple drift-diffusion model for the DNA molecules, which reproduces the experimental data surprisingly well, as well as by corresponding Brownian dynamics simulations.Comment: 9 pages, 13 figures, 3 table

    Electrophoresis and electroosmosis as determined on the level of a single isolated colloid by use of optical tweezers

    Get PDF
    Experiments are described on the electrophoretic mobility of a single isolated colloid and the electro-osmotic response of the surrounding medium. For that optical tweezers are employed which enable one to trap a particle without any mechanical contact and to measure its position and the forces acting on it with high resolution (±2 nm, ±200 fN). In a custom-made microfluidic cell, the two effects are separated using the identical colloid. The electrophoretic response is found to be ~ 5 times stronger than the electroosmotic effect. It is phase-shifted with respect to the external electric field, hence giving rise to a complex electrophoretic mobility which can be theoretically described by a strongly damped driven harmonic oscillator model. The measured electrophoretic mobility in monovalent salt is found to be in agreement with computations combining primitive model molecular dynamics simulations of the ionic double layer with the standard electrokinetic model. Mobility reversal of a single colloid is observed for trivalent ionic solutions (LaCl3) at ionic strengths > 10−2 mol/l. The latter is in quantitative agreement with a numerical model in which ion specific attractive forces are taken into consideration

    Glassy dynamics of polymethylphenylsiloxane in one- and two-dimensional nanometric confinement

    Get PDF
    Glassy dynamics of polymethylphenylsiloxane (PMPS) is studied by broadband dielectric spectroscopy in one-dimensional (1D) and two-dimensional (2D) nanometric confinement; the former is realized in thin polymer layers having thicknesses down to 5 nm, and the latter in unidirectional (thickness 50 µm) nanopores with diameters varying between 4 and 8 nm. Based on the dielectric measurements carried out in a broad spectral range at widely varying temperatures, glassy dynamics is analyzed in detail in 1D and in 2D confinements with the following results: (i) the segmental dynamics (dynamic glass transition) of PMPS in 1D confinement down to thicknesses of 5 nm is identical to the bulk in the mean relaxation rate and the width of the relaxation time distribution function; (ii) additionally a well separated surface induced relaxation is observed, being assigned to adsorption and desorption processes of polymer segments with the solid interface; (iii) in 2D confinement with native inner pore walls, the segmental dynamics shows a confinement effect, i.e., the smaller the pores are, the faster the segmental dynamics; on silanization, this dependence on the pore diameter vanishes, but the mean relaxation rate is still faster than in 1D confinement; (iv) in a 2D confinement, a pronounced surface induced relaxation process is found, the strength of which increases with the decreasing pore diameter; it can be fully removed by silanization of the inner pore walls; (v) the surface induced relaxation depends on its spectral position only negligibly on the pore diameter; (vi) comparing 1D and 2D confinements, the segmental dynamics in the latter is by about two orders of magnitude faster. All these findings can be comprehended by considering the density of the polymer; in 1D it is assumed to be the same as in the bulk, hence the dynamic glass transition is not altered; in 2D it is reduced due to a frustration of packaging resulting in a higher free volume, as proven by ortho-positronium annihilation lifetime spectroscopy
    corecore