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Abstract 

Experiments are described on the electrophoretic mobility of a single isolated colloid and the electro-

osmotic response of the surrounding medium. For that optical tweezers are employed which enable one 

to trap a particle without any mechanical contact and to measure its position and the forces acting on it 

with high resolution (±2 nm, ±200 fN). In a custom-made microfluidic cell, the two effects are separated 

using the identical colloid. The electrophoretic response is found to be ~ 5 times stronger than the 

electroosmotic effect. It is phase-shifted with respect to the external electric field, hence giving rise to a 

complex electrophoretic mobility which can be theoretically described by a strongly damped driven 

harmonic oscillator model. The measured electrophoretic mobility in monovalent salt is found to be in 

agreement with computations combining primitive model molecular dynamics simulations of the ionic 

double layer with the standard electrokinetic model. Mobility reversal of a single colloid is observed for 

trivalent ionic solutions (LaCl3) at ionic strengths > 10−2 mol/l. The latter is in quantitative agreement with 

a numerical model in which ion specific attractive forces are taken into consideration. 
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1 Introduction 

Electrophoresis and electroosmosis are classical topics of experimental and theoretical colloidal physics 

[1–7]. Usually experiments are carried out on colloidal dispersions, but using optical tweezers [8–22] it 

is possible to determine – on the level of a single isolated colloid [13, 14, 22] – both, the electrophoretic 

mobility of the particle under study and the electroosmotic response of the surrounding medium for ionic 

solutions of varying concentration and valence. This offers the perspective for a wealth of novel 

experiments.  

 

2 Experimental 

Materials. Spherical polystyrene (PS) particles (Microparticles GmbH, Berlin, Germany, diameter: 

2.23 ± 0.05 μm; polydispersity index: 0.05) in a 4 % stock solution are used. The measurements are 
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carried out in aqueous (Millipore water, pH: 5.8; conductivity: 5 μS/m, pH: 5.8) solutions of KCl, CaCl2 

and LaCl3. 

Microfluidic cell. A custom-made microfluidic cell with rectangular cross-section (height 1 mm, width 

300 μm) is used having two reservoirs connected by a channel (Figure 1). The cell is made out of 

micromachined poly-methyl-met-acrylate (PMMA) spacers, enclosed by a microscope slide (thickness 

1 mm) and a coverslip (thickness 160 μm) at the top and the bottom, respectively, and sealed by UV-

sensitive glue. Platinum electrodes are located in the two reservoirs. In order to avoid pressure changes 

in the course of the electroosmotic flow, the channel ends are open. The particle is placed at the center 

of the cross-section of the channel, either at position “A” or “B” (Figure 1). 

Optical tweezers. Optical tweezers (OT) are effective tools [9–13] to measure the response of a 

single colloid under the influence of external oscillating electric fields (Figure 1). A single particle is 

trapped in the focus of a (𝜆 = 1064 nm) laser beam; the forces acting on it can be well described by a 

harmonic potential. For a laser power of 0.2 W the force constant is 0.04 pN nm−1. The particle 

displacement is measured with a CMOS high-speed camera (10000 frames per s (fps)) with a spatial 

resolution of ~ ±2 nm, corresponding to a resolution in force of ~ 160 fN. The zero value of the external 

electric field and hence it´s phase in relation to the displacement of the colloid under study, is indicated 

by an LED flash being recorded with the camera. In order to separate between the electrophoretic 

mobility and the electroosmotic response, the identical colloid is placed with the OT either in position 

“A” or “B”, respectively; in the former a superposition of both, the electrokinetic response of the particle 

and the electroosmotic effect of the surrounding medium is measured, while in the latter only 

electroosmosis contributes. The amplitude of the electrophoretic response is ~ 5 times larger than the 

electroosmotic effect, and both depend linearly on the strength of the external electric field (Figure 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Scheme of the experimental setup. Particles are imaged using an epifluorescence microscope 
accomplished with a high-resolution CMOS camera. Scheme of the sample cell used to measure the electrophoretic 
(colloid at position A) or the electroosmotic (colloid at position B) response. For the phase measurement of the 
electrophoretic response an LED flash indicates the zero value of the external electric field. Reproduced with 
permission from [13]. 
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Figure 2: (Color online) Amplitude (bottom) and phase (top) vs. AC electric field strength at a frequency 500 Hz for 
a negatively charged PS colloid (diameter: 2.23 μm) in an aqueous solution of KCl molar concentration at pH = 5.8. 
The total electrokinetic (circles) and the electroosmotic (squares) responses (in amplitude and phase) are measured 
for the very same colloid. The dashed line represent a fit to the electrophoretic mobility (stars) using the overdamped 
harmonic oscillator model [33]; the error bars display the standard deviation over the data. Reproduced with 
permission from [22]. 

 

3 Results and discussion 

Single-colloid electrophoresis delivers data of excellent reproducibility for different colloids from the 

same batch (Figure 3a) and as well for consecutive measurements on the identical colloid (Figure 3b). 

 

 

Figure 3: (Color online) Test of reproducibility. Amplitude of the electrophoretic response vs. salt ionic strength of 
KCl aqueous solutions for three identical negatively charged PS colloids (diameter: 2.23 μm) (a) taken from the 
same batch and (b) taken for the very same single colloid in six subsequent runs as indicated by different symbols. 
Reproduced with permission from [22]. 
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Figure 4: (Color online) The electrophoretic mobility (a) and phase angle (b) vs. salt ionic strength of aqueous 
solutions of varying valency (KCl, CaCl2, and LaCl3). Squares represent the measured data, with error bars 
indicating the standard deviation. The measurements for each valency are carried out with the very same negatively 
charged PS colloid (diameter: 2.23 μm). The field strength is varied in the range 1–18 V/cm. The laser power is 
0.2 W. The simulation results with and without LJ attraction are shown via stars and triangles, respectively, 
connected by dotted lines for a guide to the eyes. In the monovalent case, the solid line represents SEM calculations 
based on GC solutions, whereas the dashed and dotted lines indicate SEM calculations using GC and spherical 
PB solutions, including the LJ attraction, respectively. Reproduced with permission from [22]. 

 

The electrophoretic response as measured in amplitude and phase, shows a pronounced dependence 

on concentration and valence of the ions in the surrounding medium (Figure 4). For the monovalent KCl, 

a maximum is observed at low ionic strengths of ~ 10−4 mol/l in agreement with the Standard 

Electrokinetic Model (SEM) and published results [4–7]. For divalent CaCl2 and trivalent LaCl3 a 

monotonic increase of the mobility with decreasing ionic strength is observed. The latter shows 

additionally a mobility reversal, as can be inferred from the 180 degree phase jump. The results can be 

quantitatively described by a numerical model taking ion specific attractive and ion correlation effects 

into account. 

 

4 Conclusion 

Single-colloid-electrophoresis is a novel tool which enables one to carry out a variety of novel high-

precision experiments in colloidal (bio)-physics. In the present article this is demonstrated for the 

example of mobility reversal in trivalent LaCl3 solutions.  
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