17 research outputs found

    Revisiting the Cardioprotective Effects of Acetylcholine Receptor Activation against Myocardial Ischemia/Reperfusion Injury

    No full text
    Acute myocardial infarction (AMI) is the most common cause of acute myocardial injury and its most clinically significant form. The most effective treatment for AMI is to restore an adequate coronary blood flow to the ischemic myocardium as quickly as possible. However, reperfusion of an ischemic region can induce cardiomyocyte death, a phenomenon termed “myocardial ischemia/reperfusion (I/R) injury”. Disruption of cardiac parasympathetic (vagal) activity is a common hallmark of a variety of cardiovascular diseases including AMI. Experimental studies have shown that increased vagal activity exerts cardioprotective effects against myocardial I/R injury. In addition, acetylcholine (ACh), the principle cardiac vagal neurotransmitter, has been shown to replicate the cardioprotective effects of cardiac ischemic conditioning. Moreover, studies have shown that cardiomyocytes can synthesize and secrete ACh, which gives further evidence concerning the importance of the non-neuronal cholinergic signaling cascades. This suggests that the activation of ACh receptors is involved in cardioprotection against myocardial I/R injury. There are two types of ACh receptors (AChRs), namely muscarinic and nicotinic receptors (mAChRs and nAChRs, respectively). However, the effects of AChRs activation in cardioprotection during myocardial I/R are still not fully understood. In this review, we summarize the evidence suggesting the association between AChRs activation with both electrical and pharmacological interventions and the cardioprotection during myocardial I/R, as well as outline potential mechanisms underlying these cardioprotective effects

    Acetylcholine Attenuates Hydrogen Peroxide-Induced Intracellular Calcium Dyshomeostasis Through Both Muscarinic and Nicotinic Receptors in Cardiomyocytes

    No full text
    Background/Aims: Oxidative stress induced intracellular Ca2+ overload plays an important role in the pathophysiology of several heart diseases. Acetylcholine (ACh) has been shown to suppress reactive oxygen species generation during oxidative stress. However, there is little information regarding the effects of ACh on the intracellular Ca2+ regulation in the presence of oxidative stress. Therefore, we investigated the effects of ACh applied before or after hydrogen peroxide (H2O2) treatment on the intracellular Ca2+ regulation in isolated cardiomyocytes. Methods: Single ventricular myocytes were isolated from the male Wistar rats for the intracellular Ca2+ transient study by a fluorimetric ratio technique. Results: H2O2 significantly decreased both of intracellular Ca2+ transient amplitude and decay rate. ACh applied before, but not after, H2O2 treatment attenuated the reduction of intracellular Ca2+ transient amplitude and decay rate. Both atropine (a muscarinic acetylcholine receptor blocker) and mecamylamine (a nicotinic acetylcholine receptor blocker) significantly decreased the protective effects of acetylcholine on the intracellular Ca2+ regulation. Moreover, the combination of atropine and mecamylamine completely abolished the protective effects of acetylcholine on intracellular Ca2+ transient amplitude and decay rate. Conclusion: ACh pretreatment attenuates H2O2-induced intracellular Ca2+ dyshomeostasis through both muscarinic and nicotinic receptors

    Voltage-gated sodium channels assemble and gate as dimers

    No full text
    International audienceFast opening and closing of voltage-gated sodium channels are crucial for proper propagation of the action potential through excitable tissues. Unlike potassium channels, sodium channel α-subunits are believed to form functional monomers. Yet, an increasing body of literature shows inconsistency with the traditional idea of a single α-subunit functioning as a monomer. Here we demonstrate that sodium channel α-subunits not only physically interact with each other but they actually assemble, function and gate as a dimer. We identify the region involved in the dimerization and demonstrate that 14-3-3 protein mediates the coupled gating. Importantly we show conservation of this mechanism among mammalian sodium channels. Our study not only shifts conventional paradigms in regard to sodium channel assembly, structure, and function but importantly this discovery of the mechanism involved in channel dimerization and biophysical coupling could open the door to new approaches and targets to treat and/or prevent sodium channelopathies

    Heart Rate Variability as an Alternative Indicator for Identifying Cardiac Iron Status in Non-Transfusion Dependent Thalassemia Patients

    No full text
    <div><p>Background</p><p>Iron-overload cardiomyopathy is a major cause of death in thalassemia patients due to the lack of an early detection strategy. Although cardiac magnetic resonance (CMR) T2* is used for early detection of cardiac iron accumulation, its availability is limited. Heart rate variability (HRV) has been used to evaluate cardiac autonomic function and found to be depressed in thalassemia. However, its direct correlation with cardiac iron accumulation has never been investigated. We investigated whether HRV can be used as an alternative indicator for early identification of cardiac iron deposition in thalassemia patients.</p><p>Methods</p><p>Ninety-nine non-transfusion dependent thalassemia patients (23.00 (17.00, 32.75) years, 35 male) were enrolled. The correlation between HRV recorded using 24-hour Holter monitoring and non-transferrin bound iron (NTBI), hemoglobin (Hb), serum ferritin, LV ejection fraction (LVEF), and CMR-T2* were determined.</p><p>Results</p><p>The median NTBI value was 3.15 (1.11, 6.59) μM. Both time and frequency domains of HRV showed a significant correlation with the NTBI level, supporting HRV as a marker of iron overload. Moreover, the LF/HF ratio showed a significant correlation with CMR-T2* with the receiver operating characteristic (ROC) curve of 0.684±0.063, suggesting that it could represent the cardiac iron deposit in thalassemia patients. HRV was also significantly correlated with serum ferritin and Hb.</p><p>Conclusions</p><p>This novel finding regarding the correlation between HRV and CMR-T2* indicates that HRV could be a potential marker in identifying early cardiac iron deposition prior to the development of LV dysfunction, and may be used as an alternative to CMR-T2* for screening cardiac iron status in thalassemia patients.</p></div
    corecore