

E68 JACC March 12, 2013 Volume 61, Issue 10

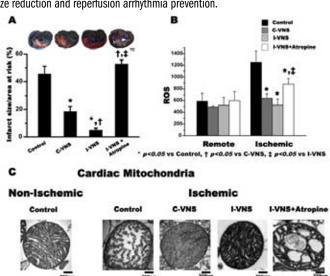
Acute Coronary Syndromes

LEFT VAGUS NERVE STIMULATION SIGNIFICANTLY ATTENUATES VENTRICULAR DYSFUNCTION AND INFARCT SIZE THROUGH PREVENTION OF MITOCHONDRIAL DYSFUNCTION DURING ACUTE ISCHEMIA-REPERFUSION INJURY IN SWINE

Moderated Poster Contributions Poster Sessions, Expo North Saturday, March 09, 2013, 3:45 p.m.-4:30 p.m.

Session Title: Acute Coronary Syndromes: Basic II Abstract Category: 2. Acute Coronary Syndromes: Basic

Presentation Number: 1169M-174


Authors: <u>Krekwit Shinlapawittayatorn</u>, Kreokkiat Chinda, Siripong Palee, Sirirat Surinkaew, Kittiya Thunsiri, Punate Weerateerangkul, Siriporn Chattipakorn, Bruce H. KenKnight, Nipon Chattipakorn, Cardiac Electrophysiology Research & Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand, Department of Oral Biology and Diagnostic Science, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand

Background: Right cervical vagus nerve stimulation (VNS) provides cardioprotective effects against acute ischemia-reperfusion injury (IRI) in small animals. We determined whether left cervical (LC) VNS applied either intermittently or continuously imparts cardioprotection against acute IRI in swine.

Methods: Thirty-two swine (25-30 kg) were randomized into 4 groups: Control (sham operated, no VNS), Continuous-VNS (C-VNS, 3.5mA, 20Hz), Intermittent-VNS (I-VNS, continuously recurring cycles of 21-s ON, 30-s OFF), and I-VNS+Atropine (1mg/kg). LC VNS was applied immediately after LAD occlusion (60 min), and continued until the end of reperfusion (120 min). The ischemic and non-ischemic myocardium was harvested for cardiac mitochondrial function assessment.

Results: LC VNS significantly reduced infarct size, improved ventricular function, decreased VF episodes, and attenuated cardiac mitochondrial reactive oxygen species production, depolarization and swelling, compared to Control. However, I-VNS produced the most profound cardioprotective effects, particularly infarct size reduction and decreased VF episodes, compared to C-VNS (Figure). These beneficial effects of VNS were abolished by Atropine, suggesting a dominant cholinergic pathway.

Conclusions: During IRI, both C-VNS and I-VNS provide significant cardioprotective effects. However, left I-VNS provides more robust efficacy than left C-VNS with respect to infarct size reduction and reperfusion arrhythmia prevention.

