33 research outputs found

    Cabozantinib in progressive medullary thyroid cancer

    Get PDF
    Purpose Cabozantinib, a tyrosine kinase inhibitor (TKI) of hepatocyte growth factor receptor (MET), vascular endothelial growth factor receptor 2, and rearranged during transfection (RET), demonstrated clinical activity in patients with medullary thyroid cancer (MTC) in phase I. Patients and Methods We conducted a double-blind, phase III trial comparing cabozantinib with placebo in 330 patients with documented radiographic progression of metastatic MTC. Patients were randomly assigned (2:1) to cabozantinib (140 mg per day) or placebo. The primary end point was progression-free survival (PFS). Additional outcome measures included tumor response rate, overall survival, and safety. Results The estimated median PFS was 11.2 months for cabozantinib versus 4.0 months for placebo (hazard ratio, 0.28; 95% CI, 0.19 to 0.40; P < .001). Prolonged PFS with cabozantinib was observed across all subgroups including by age, prior TKI treatment, and RET mutation status (hereditary or sporadic). Response rate was 28% for cabozantinib and 0% for placebo; responses were seen regardless of RET mutation status. Kaplan-Meier estimates of patients alive and progression-free at 1 year are 47.3% for cabozantinib and 7.2% for placebo. Common cabozantinib-associated adverse events included diarrhea, palmar-plantar erythrodysesthesia, decreased weight and appetite, nausea, and fatigue and resulted in dose reductions in 79% and holds in 65% of patients. Adverse events led to treatment discontinuation in 16% of cabozantinib-treated patients and in 8% of placebo-treated patients. Conclusion Cabozantinib (140 mg per day) achieved a statistically significant improvement of PFS in patients with progressive metastatic MTC and represents an important new treatment option for patients with this rare disease. This dose of cabozantinib was associated with significant but manageable toxicity

    Four-electron deoxygenative reductive coupling of carbon monoxide at a single metal site

    Get PDF
    Carbon dioxide is the ultimate source of the fossil fuels that are both central to modern life and problematic: their use increases atmospheric levels of greenhouse gases, and their availability is geopolitically constrained. Using carbon dioxide as a feedstock to produce synthetic fuels might, in principle, alleviate these concerns. Although many homogeneous and heterogeneous catalysts convert carbon dioxide to carbon monoxide, further deoxygenative coupling of carbon monoxide to generate useful multicarbon products is challenging. Molybdenum and vanadium nitrogenases are capable of converting carbon monoxide into hydrocarbons under mild conditions, using discrete electron and proton sources. Electrocatalytic reduction of carbon monoxide on copper catalysts also uses a combination of electrons and protons, while the industrial Fischer–Tropsch process uses dihydrogen as a combined source of electrons and electrophiles for carbon monoxide coupling at high temperatures and pressures6. However, these enzymatic and heterogeneous systems are difficult to probe mechanistically. Molecular catalysts have been studied extensively to investigate the elementary steps by which carbon monoxide is deoxygenated and coupled, but a single metal site that can efficiently induce the required scission of carbon–oxygen bonds and generate carbon–carbon bonds has not yet been documented. Here we describe a molybdenum compound, supported by a terphenyl–diphosphine ligand, that activates and cleaves the strong carbon–oxygen bond of carbon monoxide, enacts carbon–carbon coupling, and spontaneously dissociates the resulting fragment. This complex four-electron transformation is enabled by the terphenyl–diphosphine ligand, which acts as an electron reservoir and exhibits the coordinative flexibility needed to stabilize the different intermediates involved in the overall reaction sequence. We anticipate that these design elements might help in the development of efficient catalysts for converting carbon monoxide to chemical fuels, and should prove useful in the broader context of performing complex multi-electron transformations at a single metal site

    Pulsed Magneto-motive Ultrasound Imaging Using Ultrasmall Magnetic Nanoprobes

    No full text
    Nano-sized particles are widely regarded as a tool to study biologic events at the cellular and molecular levels. However, only some imaging modalities can visualize interaction between nanoparticles and living cells. We present a new technique, pulsed magnetomotive ultrasound imaging, which is capable of in vivo imaging of magnetic nanoparticles in real time and at sufficient depth. In pulsed magneto-motive ultrasound imaging, an external high-strength pulsed magnetic field is applied to induce the motion within the magnetically labeled tissue and ultrasound is used to detect the induced internal tissue motion. Our experiments demonstrated a sufficient contrast between normal and iron-laden cells labeled with ultrasmall magnetic nanoparticles. Therefore, pulsed magnetomotive ultrasound imaging could become an imaging tool capable of detecting magnetic nanoparticles and characterizing the cellular and molecular composition of deep-lying structures

    Questions and Controversies in the Clinical Application of Tyrosine Kinase Inhibitors to Treat Patients with Radioiodine-Refractory Differentiated Thyroid Carcinoma: Expert Perspectives

    Get PDF
    Notwithstanding regulatory approval of lenvatinib and sorafenib to treat radioiodine-refractory differentiated thyroid carcinoma (RAI-R DTC), important questions and controversies persist regarding this use of these tyrosine kinase inhibitors (TKIs). RAI-R DTC experts from German tertiary referral centers convened to identify and explore such issues; this paper summarizes their discussions. One challenge is determining when to start TKI therapy. Decision-making should be shared between patients and multidisciplinary caregivers, and should consider tumor size/burden, growth rate, and site(s), the key drivers of RAI-R DTC morbidity and mortality, along with current and projected tumor-related symptomatology, co-morbidities, and performance status. Another question involves choice of first-line TKIs. Currently, lenvatinib is generally preferred, due to greater increase in progression-free survival versus placebo treatment and higher response rate in its pivotal trial versus that of sorafenib; additionally, in those studies, lenvatinib but not sorafenib showed overall survival benefit in subgroup analysis. Whether recommended maximum or lower TKI starting doses better balance anti-tumor effects versus tolerability is also unresolved. Exploratory analyses of lenvatinib pivotal study data suggest dose-response effects, possibly favoring higher dosing; however, results are awaited of a prospective comparison of lenvatinib starting regimens. Some controversy surrounds determination of net therapeutic benefit, the key criterion for continuing TKI therapy: if tolerability is acceptable, overall disease control may justify further treatment despite limited but manageable progression. Future research should assess potential guideposts for starting TKIs; fine-tune dosing strategies and further characterize antitumor efficacy; and evaluate interventions to prevent and/or treat TKI toxicity, particularly palmar-plantar erythrodysesthesia and fatigue

    Overall survival analysis of EXAM, a phase III trial of cabozantinib in patients with radiographically progressive medullary thyroid carcinoma

    No full text
    Primary analysis of the double-blind, phase III Efficacy of XL184 (Cabozantinib) in Advanced Medullary Thyroid Cancer (EXAM) trial demonstrated significant improvement in progression-free survival with cabozantinib versus placebo in patients with progressive medullary thyroid cancer (MTC). Final analysis of overall survival (OS), a key secondary endpoint, was carried out after long-term follow-up.status: publishe
    corecore