1,774 research outputs found

    Raman scattering investigation across the magnetic and MI transition in rare earth nickelate RNiO3 (R = Sm, Nd) thin films

    Full text link
    We report a temperature-dependent Raman scattering investigation of thin film rare earth nickelates SmNiO3, NdNiO3 and Sm0.60Nd0.40NiO3, which present a metal-to-insulator (MI) transition at TMI and an antiferromagnetic-paramagnetic Neel transition at TN. Our results provide evidence that all investigated samples present a structural phase transition at TMI but the Raman signature across TMI is significantly different for NdNiO3 (TMI = TN) compared to SmNiO3 and Sm0.60Nd0.40NiO3 (TMI =/ TN). It is namely observed that the paramagnetic-insulator phase (TN < T < TMI) in SmNiO3 and Sm0.60Nd0.40NiO3 is characterized by a pronounced softening of one particular phonon band around 420 cm-1. This signature is unusual and points to an important and continuous change in the distortion of NiO6 octahedra (thus the Ni-O bonding) which stabilizes upon cooling at the magnetic transition. The observed behaviour might well be a general feature for all rare earth nickelates with TMI =/ TN and illustrates intriguing coupling mechanism in the TMI > T > TN regime.Comment: Revised & published versio

    Comparing hierarchies of total functionals

    Full text link
    In this paper we consider two hierarchies of hereditarily total and continuous functionals over the reals based on one extensional and one intensional representation of real numbers, and we discuss under which asumptions these hierarchies coincide. This coincidense problem is equivalent to a statement about the topology of the Kleene-Kreisel continuous functionals. As a tool of independent interest, we show that the Kleene-Kreisel functionals may be embedded into both these hierarchies.Comment: 28 page

    Random local strain effects in homovalent-substituted relaxor ferroelectrics: a first-principles study of BaTi0.74Zr0.26O3

    Full text link
    We present first-principles supercell calculations on BaTi0.74Zr0.26O3, a prototype material for relaxors with a homovalent substitution. From a statistical analysis of relaxed structures, we give evidence for four types of Ti-atom polar displacements: along the , , or directions of the cubic unit cell, or almost cancelled. The type of a Ti displacement is entirely determined by the Ti/Zr distribution in the adjacent unit cells. The underlying mechanism involves local strain effects that ensue from the difference in size between the Ti4+ and Zr4+ cations. These results shed light on the structural mechanisms that lead to disordered Ti displacements in BaTi(1-x)Zr(x)O3 relaxors, and probably in other BaTiO3-based relaxors with homovalent substitution.Comment: 5 pages, 4 figure

    Strain analysis of multiferroic BiFeO3-CoFe2O4 nanostructures by Raman scattering

    Full text link
    We report a Raman scattering investigation of columnar BiFeO3-CoFe2O4 (BFO-CFO) epitaxial thin film nanostructures, where BFO pillars are embedded in a CFO matrix. The feasibility of a strain analysis is illustrated through an investigation of two nanostructures with different BFO-CFO ratios. We show that the CFO matrix presents the same strain state in both nanostructures, while the strain state of the BFO pillars depends on the BFO/CFO ratio with an increasing tensile strain along the out-of-plane direction with decreasing BFO content. Our results demonstrate that Raman scattering allows monitoring strain states in complex 3D multiferroic pillar/matrix composites.Comment: revised version submitted to Appl. Phys. Let

    SmNiO3/NdNiO3 thin film multilayers

    Full text link
    Rare earth nickelates RENiO3 which attract interest due to their sharp metal-insulator phase transition, are instable in bulk form due to the necessity of an important oxygen pressure to stabilize Ni in its 3+ state of oxidation. Here, we report the stabilization of rare earth nickelates in [(SmNiO3)t/(NdNiO3)t]n thin film multilayers, t being the thickness of layers alternated n times. Both bilayers and multilayers have been deposited by Metal-Organic Chemical Vapour Deposition. The multilayer structure and the presence of the metastable phases SmNiO3 and NdNiO3 are evidenced from by X-ray and Raman scattering. Electric measurements of a bilayer structure further support the structural quality of the embedded rare earth nickelate layers.Comment: Appl. Phys. Lett. (2011), accepte

    An algorithmic approach to the existence of ideal objects in commutative algebra

    Full text link
    The existence of ideal objects, such as maximal ideals in nonzero rings, plays a crucial role in commutative algebra. These are typically justified using Zorn's lemma, and thus pose a challenge from a computational point of view. Giving a constructive meaning to ideal objects is a problem which dates back to Hilbert's program, and today is still a central theme in the area of dynamical algebra, which focuses on the elimination of ideal objects via syntactic methods. In this paper, we take an alternative approach based on Kreisel's no counterexample interpretation and sequential algorithms. We first give a computational interpretation to an abstract maximality principle in the countable setting via an intuitive, state based algorithm. We then carry out a concrete case study, in which we give an algorithmic account of the result that in any commutative ring, the intersection of all prime ideals is contained in its nilradical

    Imaging Orbital-selective Quasiparticles in the Hund's Metal State of FeSe

    Get PDF
    Strong electronic correlations, emerging from the parent Mott insulator phase, are key to copper-based high temperature superconductivity (HTS). By contrast, the parent phase of iron-based HTS is never a correlated insulator. But this distinction may be deceptive because Fe has five active d-orbitals while Cu has only one. In theory, such orbital multiplicity can generate a Hund's Metal state, in which alignment of the Fe spins suppresses inter-orbital fluctuations producing orbitally selective strong correlations. The spectral weights ZmZ_m of quasiparticles associated with different Fe orbitals m should then be radically different. Here we use quasiparticle scattering interference resolved by orbital content to explore these predictions in FeSe. Signatures of strong, orbitally selective differences of quasiparticle ZmZ_m appear on all detectable bands over a wide energy range. Further, the quasiparticle interference amplitudes reveal that Zxy<Zxz<<ZyzZ_{xy}<Z_{xz}<<Z_{yz}, consistent with earlier orbital-selective Cooper pairing studies. Thus, orbital-selective strong correlations dominate the parent state of iron-based HTS in FeSe.Comment: for movie M1, see http://www.physik.uni-leipzig.de/~kreisel/osqp/M1.mp4, for movie M2, see http://www.physik.uni-leipzig.de/~kreisel/osqp/M2.mp4, for movie M3, see http://www.physik.uni-leipzig.de/~kreisel/osqp/M3.mp4, for movie M4, see http://www.physik.uni-leipzig.de/~kreisel/osqp/M4.mp4, for movie M5, see http://www.physik.uni-leipzig.de/~kreisel/osqp/M5.mp

    Multi-Atom Quasiparticle Scattering Interference for Superconductor Energy-Gap Symmetry Determination

    Get PDF
    Complete theoretical understanding of the most complex superconductors requires a detailed knowledge of the symmetry of the superconducting energy-gap Δkα\Delta_\mathbf{k}^\alpha, for all momenta k\mathbf{k} on the Fermi surface of every band α\alpha. While there are a variety of techniques for determining ∣Δkα∣|\Delta_\mathbf{k}^\alpha|, no general method existed to measure the signed values of Δkα\Delta_\mathbf{k}^\alpha. Recently, however, a new technique based on phase-resolved visualization of superconducting quasiparticle interference (QPI) patterns centered on a single non-magnetic impurity atom, was introduced. In principle, energy-resolved and phase-resolved Fourier analysis of these images identifies wavevectors connecting all k-space regions where Δkα\Delta_\mathbf{k}^\alpha has the same or opposite sign. But use of a single isolated impurity atom, from whose precise location the spatial phase of the scattering interference pattern must be measured is technically difficult. Here we introduce a generalization of this approach for use with multiple impurity atoms, and demonstrate its validity by comparing the Δkα\Delta_\mathbf{k}^\alpha it generates to the Δkα\Delta_\mathbf{k}^\alpha determined from single-atom scattering in FeSe where s±s_{\pm} energy-gap symmetry is established. Finally, to exemplify utility, we use the multi-atom technique on LiFeAs and find scattering interference between the hole-like and electron-like pockets as predicted for Δkα\Delta_\mathbf{k}^\alpha of opposite sign
    • 

    corecore