195 research outputs found

    Combinatorial CRISPR-Cas9 screens for de novo mapping of genetic interactions.

    Get PDF
    We developed a systematic approach to map human genetic networks by combinatorial CRISPR-Cas9 perturbations coupled to robust analysis of growth kinetics. We targeted all pairs of 73 cancer genes with dual guide RNAs in three cell lines, comprising 141,912 tests of interaction. Numerous therapeutically relevant interactions were identified, and these patterns replicated with combinatorial drugs at 75% precision. From these results, we anticipate that cellular context will be critical to synthetic-lethal therapies

    CLINICAL CHARACTERISTICS, OUTCOMES AND RISK FACTORS FOR DEATH AMONG CRITICALLY ILL PATIENTS WITH HIV-RELATED ACUTE KIDNEY INJURY

    Full text link
    SUMMARY Background: The aim of this study is to describe clinical characteristics, outcomes and risk factors for death among patients with HIV-related acute kidney injury (AKI) admitted to an intensive care unit (ICU). Methods: A retrospective study was conducted with HIV-infected AKI patients admitted to the ICU of an infectious diseases hospital in Fortaleza, Brazil. All the patients with confirmed diagnosis of HIV and AKI admitted from January 2004 to December 2011 were included. A comparison between survivors and non-survivors was performed. Risk factors for death were investigated. Results: Among 256 AKI patients admitted to the ICU in the study period, 73 were identified as HIV-infected, with a predominance of male patients (83.6%), and the mean age was 41.2 ± 10.4 years. Non-survivor patients presented higher APACHE II scores (61.4 ± 19 vs. 38.6 ± 18, p = 0.004), used more vasoconstrictors (70.9 vs. 37.5%, p = 0.02) and needed more mechanical ventilation - MV (81.1 vs. 35.3%, p = 0.001). There were 55 deaths (75.3%), most of them (53.4%) due to septic shock. Independent risk factors for mortality were septic shock (OR = 14.2, 95% CI = 2.0-96.9, p = 0.007) and respiratory insufficiency with need of MV (OR = 27.6, 95% CI = 5.0-153.0, p < 0.001). Conclusion: Non-survivor HIV-infected patients with AKI admitted to the ICU presented higher severity APACHE II scores, more respiratory damage and hemodynamic impairment than survivors. Septic shock and respiratory insufficiency were independently associated to death

    Methods for visual mining of genomic and proteomic data atlases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As the volume, complexity and diversity of the information that scientists work with on a daily basis continues to rise, so too does the requirement for new analytic software. The analytic software must solve the dichotomy that exists between the need to allow for a high level of scientific reasoning, and the requirement to have an intuitive and easy to use tool which does not require specialist, and often arduous, training to use. Information visualization provides a solution to this problem, as it allows for direct manipulation and interaction with diverse and complex data. The challenge addressing bioinformatics researches is how to apply this knowledge to data sets that are continually growing in a field that is rapidly changing.</p> <p>Results</p> <p>This paper discusses an approach to the development of visual mining tools capable of supporting the mining of massive data collections used in systems biology research, and also discusses lessons that have been learned providing tools for both local researchers and the wider community. Example tools were developed which are designed to enable the exploration and analyses of both proteomics and genomics based atlases. These atlases represent large repositories of raw and processed experiment data generated to support the identification of biomarkers through mass spectrometry (the PeptideAtlas) and the genomic characterization of cancer (The Cancer Genome Atlas). Specifically the tools are designed to allow for: the visual mining of thousands of mass spectrometry experiments, to assist in designing informed targeted protein assays; and the interactive analysis of hundreds of genomes, to explore the variations across different cancer genomes and cancer types.</p> <p>Conclusions</p> <p>The mining of massive repositories of biological data requires the development of new tools and techniques. Visual exploration of the large-scale atlas data sets allows researchers to mine data to find new meaning and make sense at scales from single samples to entire populations. Providing linked task specific views that allow a user to start from points of interest (from diseases to single genes) enables targeted exploration of thousands of spectra and genomes. As the composition of the atlases changes, and our understanding of the biology increase, new tasks will continually arise. It is therefore important to provide the means to make the data available in a suitable manner in as short a time as possible. We have done this through the use of common visualization workflows, into which we rapidly deploy visual tools. These visualizations follow common metaphors where possible to assist users in understanding the displayed data. Rapid development of tools and task specific views allows researchers to mine large-scale data almost as quickly as it is produced. Ultimately these visual tools enable new inferences, new analyses and further refinement of the large scale data being provided in atlases such as PeptideAtlas and The Cancer Genome Atlas.</p

    Vpr14-88-Apobec3G Fusion Protein Is Efficiently Incorporated into Vif-Positive HIV-1 Particles and Inhibits Viral Infection

    Get PDF
    APOBEC3G (A3G), a deoxycytidine deaminase, is a potent host antiviral factor that can restrict HIV-1 infection. During Vif-negative HIV-1 replication, A3G is incorporated into HIV-1 particles, induces mutations in reverse transcribed viral DNA and inhibits reverse transcription. However, HIV-1 Vif counteracts A3G's activities by inducing its degradation and by blocking its incorporation into HIV-1 particles. Thus, it is interesting to elucidate a mechanism that would allow A3G to escape the effects of Vif in order to rescue its potent antiviral activity and to provide a possible novel therapeutic strategy for treating HIV-1 infection.In this study, we generated an R88-A3G fusion protein by fusing A3G to a virion-targeting polypeptide (R14-88) derived from HIV-1 Vpr protein and compared its antiviral effects relative to those of HA-tagged native A3G (HA-A3G). Our study showed that transient expression of the R88-A3G fusion protein in both Vif(-) and Vif(+) HIV-1 producing cells drastically inhibited viral infection in HeLa-CD4-CCR5-cells, CD4(+) C8166 T cells and human primary PBMCs. Moreover, we established CD4(+) C8166 T cell lines that stably express either R88-A3G or HA-A3G by transduction with VSV-G-pseudotyped lentiviral vector that harbor expression cassettes for R88-A3G or HA-A3G, respectively, and tested their susceptibility to Vif(+) HIV-1 infection. Our results clearly reveal that expression of R88-A3G in transduced CD4(+) C8166 cells significantly blocked Vif(+) HIV-1 infection. In an attempt to understand the mechanism underlying the antiviral activity of R88-A3G, we demonstrated that R88-A3G was efficiently incorporated into viral particles in the presence of Vif. Moreover, PCR analysis revealed that R88-A3G significantly inhibited viral cDNA synthesis during the early stage of Vif(+) virus infection.Our results clearly indicate that R88 delivers A3G into Vif(+) HIV-1 particles and inhibits infectivity and spread of the virions among CD4(+) T cells. This study provides evidence for an effective strategy to modify a host protein with innate anti-HIV-1 activity and rescue its potent anti-HIV potential in the presence of Vif. Further characterization and optimization of this system may lead to the development of an effective therapeutic approach against HIV-1 infection

    The cellular source for APOBEC3G's incorporation into HIV-1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human APOBEC3G (hA3G) has been identified as a cellular inhibitor of HIV-1 infectivity. Viral incorporation of hA3G is an essential step for its antiviral activity. Although the mechanism underlying hA3G virion encapsidation has been investigated extensively, the cellular source of viral hA3G remains unclear.</p> <p>Results</p> <p>Previous studies have shown that hA3G forms low-molecular-mass (LMM) and high-molecular-mass (HMM) complexes. Our work herein provides evidence that the majority of newly-synthesized hA3G interacts with membrane lipid raft domains to form Lipid raft-associated hA3G (RA hA3G), which serve as the precursor of the mature HMM hA3G complex, while a minority of newly-synthesized hA3G remains in the cytoplasm as a soluble LMM form. The distribution of hA3G among the soluble LMM form, the RA LMM form and the mature forms of HMM is regulated by a mechanism involving the N-terminal part of the linker region and the C-terminus of hA3G. Mutagenesis studies reveal a direct correlation between the ability of hA3G to form the RA LMM complex and its viral incorporation.</p> <p>Conclusions</p> <p>Together these data suggest that the Lipid raft-associated LMM A3G complex functions as the cellular source of viral hA3G.</p

    Impact of Circulating Cholesterol Levels on Growth and Intratumoral Androgen Concentration of Prostate Tumors

    Get PDF
    Prostate cancer (PCa) is the second most common cancer in men. Androgen deprivation therapy (ADT) leads to tumor involution and reduction of tumor burden. However, tumors eventually reemerge that have overcome the absence of gonadal androgens, termed castration resistant PCa (CRPC). Theories underlying the development of CRPC include androgen receptor (AR) mutation allowing for promiscuous activation by non-androgens, AR amplification and overexpression leading to hypersensitivity to low androgen levels, and/or tumoral uptake and conversion of adrenally derived androgens. More recently it has been proposed that prostate tumor cells synthesize their own androgens through de novo steroidogenesis, which involves the step-wise synthesis of androgens from cholesterol. Using the in vivo LNCaP PCa xenograft model, previous data from our group demonstrated that a hypercholesterolemia diet potentiates prostatic tumor growth via induction of angiogenesis. Using this same model we now demonstrate that circulating cholesterol levels are significantly associated with tumor size (R = 0.3957, p = 0.0049) and intratumoral levels of testosterone (R = 0.41, p = 0.0023) in LNCaP tumors grown in hormonally intact mice. We demonstrate tumoral expression of cholesterol uptake genes as well as the spectrum of steroidogenic enzymes necessary for androgen biosynthesis from cholesterol. Moreover, we show that circulating cholesterol levels are directly correlated with tumoral expression of CYP17A, the critical enzyme required for de novo synthesis of androgens from cholesterol (R = 0.4073, p = 0.025) Since hypercholesterolemia does not raise circulating androgen levels and the adrenal gland of the mouse synthesizes minimal androgens, this study provides evidence that hypercholesterolemia increases intratumoral de novo steroidogenesis. Our results are consistent with the hypothesis that cholesterol-fueled intratumoral androgen synthesis may accelerate the growth of prostate tumors, and suggest that treatment of CRPC may be optimized by inclusion of cholesterol reduction therapies in conjunction with therapies targeting androgen synthesis and the AR

    Expression and localisation of Akt-1, Akt-2 and Akt-3 correlate with clinical outcome of prostate cancer patients

    Get PDF
    We investigated the correlation between the expression and localisation of Akt-1, Akt-2, Akt-3, phospho-Akt proteins and the clinicopathological parameters in 63 prostate cancer specimens. More than 60% of cancerous tissues overexpressed Akt-1, Akt-2 or Akt-3. Cytoplasmic Akt-1 expression was correlated with a higher risk of postoperative prostate-specific antigen (PSA) recurrence and shorter PSA recurrence interval. Cytoplasmic Akt-2 did not show any significant correlation with clinicopathological parameters predicting outcomes. Cytoplasmic Akt-3 was associated with hormone-refractory disease progression and extracapsular invasion. Nuclear Akt-1 and Akt-2 expression were correlated with favourable outcome parameters such as absence of lymph node and perineural invasion. Kaplan–Meier analysis and Cox regression model also showed that Akt-1 and Akt-2, but not Akt-3 or phospho-Akt was associated with a significantly higher risk of PSA recurrence. In contrast, nuclear Akt-1 was significantly associated with a lower risk of PSA recurrence. Multivariate analysis revealed that clinical stage, Gleason score and the combined cytoplasmic nuclear Akt-1 marker in cancerous tissues were significant independent prognostic factors of PSA recurrence. This is the first report demonstrating in patients with prostate cancer and the particular role of Akt-1 isoform expression as a prognostic marker depending of its localisation

    Human malarial disease: a consequence of inflammatory cytokine release

    Get PDF
    Malaria causes an acute systemic human disease that bears many similarities, both clinically and mechanistically, to those caused by bacteria, rickettsia, and viruses. Over the past few decades, a literature has emerged that argues for most of the pathology seen in all of these infectious diseases being explained by activation of the inflammatory system, with the balance between the pro and anti-inflammatory cytokines being tipped towards the onset of systemic inflammation. Although not often expressed in energy terms, there is, when reduced to biochemical essentials, wide agreement that infection with falciparum malaria is often fatal because mitochondria are unable to generate enough ATP to maintain normal cellular function. Most, however, would contend that this largely occurs because sequestered parasitized red cells prevent sufficient oxygen getting to where it is needed. This review considers the evidence that an equally or more important way ATP deficency arises in malaria, as well as these other infectious diseases, is an inability of mitochondria, through the effects of inflammatory cytokines on their function, to utilise available oxygen. This activity of these cytokines, plus their capacity to control the pathways through which oxygen supply to mitochondria are restricted (particularly through directing sequestration and driving anaemia), combine to make falciparum malaria primarily an inflammatory cytokine-driven disease
    corecore