41 research outputs found

    Tuning of the transverse magneto-optical Kerr effect in magneto-plasmonic crystals

    Get PDF
    The spectral properties of the transverse magneto-optical Kerr effect (TMOKE) in periodic metal–dielectric hybrid structures are studied, in particular with respect to the achievable magnitude. It is shown that the TMOKE is sensitive to the magneto-optical activity of the bismuth-substituted rare-earth iron garnet, which is used as a dielectric material in the investigated structures. For samples with larger Bi substitution level and, consequently, larger gyration constant, the magnitude of the TMOKE increases and reaches 13% in the case of a Bi1.8Lu1.2Fe3.6Al1.4O12 magnetic film. Further, it is demonstrated that the TMOKE vanishes at the high-symmetry points of the Brillouin zone (at the Γ and X points). The main enhancement of the TMOKE takes place near the resonances of the surface plasmon polaritons (SPPs) at the metal/magnetic–dielectric interface. However, near the degenerate resonances of the SPPs at the air/metal and metal/magnetic–dielectric interfaces the TMOKE is increased by the air/metal SPPs as well. This phenomenon is explained in terms of a coupled oscillator model

    Magnetophotonic intensity effects in hybrid metal-dielectric structures

    Get PDF
    The magneto-optical properties of a hybrid metal-dielectric structure consisting of a one-dimensional gold grating on top of a magnetic waveguide layer are studied experimentally and theoretically. It is demonstrated that a magnetic field applied in the longitudinal configuration (in the plane of the magnetic film and perpendicular to the slits in the gold grating) to the metal-dielectric structure modifies the field distribution of the optical modes and thus changes the mode excitation conditions. In the optical far field, this manifests in the alteration of the optical transmittance or reflectance when the structure becomes magnetized. This magneto-optical effect is shown to represent a novel class of effects related to the magnetic-field-induced modification of the Bloch modes of the periodic hybrid structure. That is why we define this effect as longitudinal magnetophotonic intensity effect (LMPIE). The LMPIE has two contributions, odd and even in magnetization. While the even LMPIE is maximal for the light polarized perpendicular to the grating slits (TM) and minimal for the orthogonal polarization (TE), the odd LMPIE takes maximum values at some intermediate polarization and vanishes for pure TM and TE polarizations. Two principal modes of the magnetic layer - TM and TE - acquire in the longitudinal magnetic field additional field components and thus turn into quasi-TM and quasi-TE modes, respectively. The largest LMPIE is observed for excitation of the antisymmetrical quasi-TE mode by TM-polarized light. The value of the LMPIE measured for the plasmonic structure with a magnetic film of Bi2Dy1Fe4Ga1O12 composition is about 1% for the even effect and 2% for the odd one. However, the plasmonic structure with a magnetic film with a higher concentration of bismuth (Bi2.97Er0.03Fe4Al0.5Ga0.5O12) gives significantly larger LMPIE: even LMPIE reaches 24% and odd LMPIE is 9%. Enhancement of the magneto-optical figure of merit (defined as the ratio of the specific Faraday angle of a magnetic film to its absorption coefficient) of the magnetic films potentially causes the even LMPIE to exceed 100% as is predicted by calculations. Thus, the nanostructured material described here may be considered as an ultrafast magnetophotonic light valve

    Plasmon-mediated magneto-optical transparency

    Get PDF
    Magnetic field control of light is among the most intriguing methods for modulation of light intensity and polarization on sub-nanosecond timescales. The implementation in nanostructured hybrid materials provides a remarkable increase of magneto-optical effects. However, so far only the enhancement of already known effects has been demonstrated in such materials. Here we postulate a novel magneto-optical phenomenon that originates solely from suitably designed nanostructured metal-dielectric material, the so-called magneto-plasmonic crystal. In this material, an incident light excites coupled plasmonic oscillations and a waveguide mode. An in-plane magnetic field allows excitation of an orthogonally polarized waveguide mode that modifies optical spectrum of the magneto-plasmonic crystal and increases its transparency. The experimentally achieved light intensity modulation reaches 24%. As the effect can potentially exceed 100%, it may have great importance for applied nanophotonics. Further, the effect allows manipulating and exciting waveguide modes by a magnetic field and light of proper polarization

    Midbrain structure volume, estimated myelin and functional connectivity in idiopathic generalised epilepsy

    Get PDF
    BackgroundStructural and functional neuroimaging studies often overlook lower basal ganglia structures located in and adjacent to the midbrain due to poor contrast on clinically acquired T1-weighted scans. Here, we acquired T1-weighted, T2-weighted, and resting-state fMRI scans to investigate differences in volume, estimated myelin content and functional connectivity of the substantia nigra (SN), subthalamic nuclei (SubTN) and red nuclei (RN) of the midbrain in IGE.MethodsThirty-three patients with IGE (23 refractory, 10 non-refractory) and 39 age and sex-matched healthy controls underwent MR imaging. Midbrain structures were automatically segmented from T2-weighted images and structural volumes were calculated. The estimated myelin content for each structure was determined using a T1-weighted/T2-weighted ratio method. Resting-state functional connectivity analysis of midbrain structures (seed-based) was performed using the CONN toolbox.ResultsAn increased volume of the right RN was found in IGE and structural volumes of the right SubTN differed between patients with non-refractory and refractory IGE. However, no volume findings survived corrections for multiple comparisons. No myelin alterations of midbrain structures were found for any subject groups. We found functional connectivity alterations including significantly decreased connectivity between the left SN and the thalamus and significantly increased connectivity between the right SubTN and the superior frontal gyrus in IGE.ConclusionsWe report volumetric and functional connectivity alterations of the midbrain in patients with IGE. We postulate that potential increases in structural volumes are due to increased iron deposition that impacts T2-weighted contrast. These findings are consistent with previous studies demonstrating pathophysiological abnormalities of the lower basal ganglia in animal models of generalised epilepsy

    Everyday legitimacy and international administration: global governance and local legitimacy in Kosovo

    Get PDF
    International administrations are a very specific form of statebuilding. This paper examines the limits illustrated by the experience in Kosovo. Here, the international administration faced the same requirements of any legitimate, Liberal government, but without the checks and balances normally associated with Liberal governance. Thus, the international administration was granted full authority and the power thereby associated, but without the legitimacy upon which the Liberal social contract rests. The state-building agenda put forth came to be seen as more exogenous, reinforcing the delegitimization process. This paper will specifically address the influence of the Weberian approach to legitimacy on the statebuilding literature, as well as its limits. It will then propose other possible avenues for statebuilding, more in line with a wider understanding of legitimacy and intervention

    Systematic Grant and Funding Body Acknowledgment Data for Publications: An Examination of New Dimensions and New Controversies for Bibliometrics

    Get PDF
    Bibliographic databases are beginning to provide systematic grant and funding body acknowledgement data for the publications they index. This paper considers how this new data might be used for policy purposes and the key issues that are likely to arise in its use. While the attempt to provide this kind of systematic data is in its relative infancy, there is already sufficient information within the WOS database to examine a number of controversies in science studies. This paper considers one such issue, namely the relationship between the number of funding sources acknowledged and the citation impact of publications where a positive relationship has been assumed to exist. Analyses of sets of publications from 2009 from the journals Cell and Physical Review Letters give contrasting results, suggesting that our understanding of the issue of the relationship between the impact of a publication and the number of funding sources which it acknowledges is not fully understood and may be more complicated that previously considered. It is proposed that scientific research findings are packaged by researchers into papers in a variety of ways for a wide variety of purposes. Individual funding quanta from whatever source are not therefore inputs to papers directly; rather, such funding supports a process that has amongst its outcomes, the production of papers

    The ENIGMA-Epilepsy working group: Mapping disease from large data sets

    Get PDF
    Epilepsy is a common and serious neurological disorder, with many different constituent conditions characterized by their electro clinical, imaging, and genetic features. MRI has been fundamental in advancing our understanding of brain processes in the epilepsies. Smaller‐scale studies have identified many interesting imaging phenomena, with implications both for understanding pathophysiology and improving clinical care. Through the infrastructure and concepts now well‐established by the ENIGMA Consortium, ENIGMA‐Epilepsy was established to strengthen epilepsy neuroscience by greatly increasing sample sizes, leveraging ideas and methods established in other ENIGMA projects, and generating a body of collaborating scientists and clinicians to drive forward robust research. Here we review published, current, and future projects, that include structural MRI, diffusion tensor imaging (DTI), and resting state functional MRI (rsfMRI), and that employ advanced methods including structural covariance, and event‐based modeling analysis. We explore age of onset‐ and duration‐related features, as well as phenomena‐specific work focusing on particular epilepsy syndromes or phenotypes, multimodal analyses focused on understanding the biology of disease progression, and deep learning approaches. We encourage groups who may be interested in participating to make contact to further grow and develop ENIGMA‐Epilepsy

    White matter abnormalities across different epilepsy syndromes in adults: an ENIGMA-Epilepsy study

    Get PDF
    The epilepsies are commonly accompanied by widespread abnormalities in cerebral white matter. ENIGMA-Epilepsy is a large quantitative brain imaging consortium, aggregating data to investigate patterns of neuroimaging abnormalities in common epilepsy syndromes, including temporal lobe epilepsy, extratemporal epilepsy, and genetic generalized epilepsy. Our goal was to rank the most robust white matter microstructural differences across and within syndromes in a multicentre sample of adult epilepsy patients. Diffusion-weighted MRI data were analysed from 1069 healthy controls and 1249 patients: temporal lobe epilepsy with hippocampal sclerosis (n = 599), temporal lobe epilepsy with normal MRI (n = 275), genetic generalized epilepsy (n = 182) and non-lesional extratemporal epilepsy (n = 193). A harmonized protocol using tract-based spatial statistics was used to derive skeletonized maps of fractional anisotropy and mean diffusivity for each participant, and fibre tracts were segmented using a diffusion MRI atlas. Data were harmonized to correct for scanner-specific variations in diffusion measures using a batch-effect correction tool (ComBat). Analyses of covariance, adjusting for age and sex, examined differences between each epilepsy syndrome and controls for each white matter tract (Bonferroni corrected at P < 0.001). Across ‘all epilepsies’ lower fractional anisotropy was observed in most fibre tracts with small to medium effect sizes, especially in the corpus callosum, cingulum and external capsule. There were also less robust increases in mean diffusivity. Syndrome-specific fractional anisotropy and mean diffusivity differences were most pronounced in patients with hippocampal sclerosis in the ipsilateral parahippocampal cingulum and external capsule, with smaller effects across most other tracts. Individuals with temporal lobe epilepsy and normal MRI showed a similar pattern of greater ipsilateral than contralateral abnormalities, but less marked than those in patients with hippocampal sclerosis. Patients with generalized and extratemporal epilepsies had pronounced reductions in fractional anisotropy in the corpus callosum, corona radiata and external capsule, and increased mean diffusivity of the anterior corona radiata. Earlier age of seizure onset and longer disease duration were associated with a greater extent of diffusion abnormalities in patients with hippocampal sclerosis. We demonstrate microstructural abnormalities across major association, commissural, and projection fibres in a large multicentre study of epilepsy. Overall, patients with epilepsy showed white matter abnormalities in the corpus callosum, cingulum and external capsule, with differing severity across epilepsy syndromes. These data further define the spectrum of white matter abnormalities in common epilepsy syndromes, yielding more detailed insights into pathological substrates that may explain cognitive and psychiatric co-morbidities and be used to guide biomarker studies of treatment outcomes and/or genetic research
    corecore