7 research outputs found

    ARTEFACTS: How do we want to deal with the future of our one and only planet?

    Get PDF
    The European Commission’s Science and Knowledge Service, the Joint Research Centre (JRC), decided to try working hand-in-hand with leading European science centres and museums. Behind this decision was the idea that the JRC could better support EU Institutions in engaging with the European public. The fact that European Union policies are firmly based on scientific evidence is a strong message which the JRC is uniquely able to illustrate. Such a collaboration would not only provide a platform to explain the benefits of EU policies to our daily lives but also provide an opportunity for European citizens to engage by taking a more active part in the EU policy making process for the future. A PILOT PROGRAMME To test the idea, the JRC launched an experimental programme to work with science museums: a perfect partner for three compelling reasons. Firstly, they attract a large and growing number of visitors. Leading science museums in Europe have typically 500 000 visitors per year. Furthermore, they are based in large European cities and attract local visitors as well as tourists from across Europe and beyond. The second reason for working with museums is that they have mastered the art of how to communicate key elements of sophisticated arguments across to the public and making complex topics of public interest readily accessible. That is a high-value added skill and a crucial part of the valorisation of public-funded research, never to be underestimated. Finally museums are, at present, undergoing something of a renaissance. Museums today are vibrant environments offering new techniques and technologies to both inform and entertain, and attract visitors of all demographics.JRC.H.2-Knowledge Management Methodologies, Communities and Disseminatio

    Global fern and lycophyte richness explained : how regional and local factors shape plot richness

    No full text
    Aim: To disentangle the influence of environmental factors at different spatial grains (regional and local) on fern and lycophyte species richness and to ask how regional and plot-level richness are related to each other. Location: Global. Taxon: Ferns and lycophytes. Methods: We explored fern and lycophyte species richness at two spatial grains, regional (hexagonal grid cells of 7,666 km2) and plot level (300–500 m2), in relation to environmental data at regional and local grains (the 7,666 km2 hexagonal grid cells and 4 km2 square grid cells, respectively). For the regional grain, we obtained species richness data for 1,243 spatial units and used them together with climatic and topographical predictors to model global fern richness. For the plot-level grain, we collated a global dataset of nearly 83,000 vegetation plots with a surface area in the range 300–500 m2 in which all fern and lycophyte species had been counted. We used structural equation modelling to identify which regional and local factors have the biggest effect on plot-level fern and lycophyte species richness worldwide. We investigate how plot-level richness is related to modelled regional richness at the plot's location. Results: Plot-level fern and lycophyte species richness were best explained by models allowing a link between regional environment and plot-level richness. A link between regional richness and plot-level richness was essential, as models without it were rejected, while models without the regional environment-plot-level richness link were still valid but had a worse goodness-of-fit value. Plot-level richness showed a hump-shaped relationship with regional richness. Main conclusions: Regional environment and regional fern and lycophyte species richness each are important determinants of plot-level richness, and the inclusion of one does not substitute the inclusion of the other. Plot-level richness increases with regional richness until a saturation point is reached, after which plot-level richness decreases despite increasing regional richness, possibly reflecting species interactions
    corecore