227 research outputs found

    The coil-globule transition of confined polymers

    Full text link
    We study long polymer chains in a poor solvent, confined to the space between two parallel hard walls. The walls are energetically neutral and pose only a geometric constraint which changes the properties of the coil-globule (or "θ\theta-") transition. We find that the θ\theta temperature increases monotonically with the width DD between the walls, in contrast to recent claims in the literature. Put in a wider context, the problem can be seen as a dimensional cross over in a tricritical point of a ϕ4\phi^4 model. We roughly verify the main scaling properties expected for such a phenomenon, but we find also somewhat unexpected very long transients before the asymptotic scaling regions are reached. In particular, instead of the expected scaling RN4/7R\sim N^{4/7} exactly at the (DD-dependent) theta point we found that RR increases less fast than N1/2N^{1/2}, even for extremely long chains.Comment: 5 pages, 6 figure

    Casimir Forces at Tricritical Points: Theory and Possible Experiments

    Full text link
    Using field-theoretical methods and exploiting conformal invariance, we study Casimir forces at tricritical points exerted by long-range fluctuations of the order-parameter field. Special attention is paid to the situation where the symmetry is broken by the boundary conditions (extraordinary transition). Besides the parallel-plate configuration, we also discuss the geometries of two separate spheres and a single sphere near a planar wall, which may serve as a model for colloidal particles immersed in a fluid. In the concrete case of ternary mixtures a quantitative comparison with critical Casimir and van der Waals forces shows that, especially with symmetry-breaking boundaries, the tricritical Casimir force is considerably stronger than the critical one and dominates also the competing van der Waals force.Comment: 18 pages, Latex, 3 postscript figures, uses Elsevier style file

    Universality of the thermodynamic Casimir effect

    Full text link
    Recently a nonuniversal character of the leading spatial behavior of the thermodynamic Casimir force has been reported [X. S. Chen and V. Dohm, Phys. Rev. E {\bf 66}, 016102 (2002)]. We reconsider the arguments leading to this observation and show that there is no such leading nonuniversal term in systems with short-ranged interactions if one treats properly the effects generated by a sharp momentum cutoff in the Fourier transform of the interaction potential. We also conclude that lattice and continuum models then produce results in mutual agreement independent of the cutoff scheme, contrary to the aforementioned report. All results are consistent with the {\em universal} character of the Casimir force in systems with short-ranged interactions. The effects due to dispersion forces are discussed for systems with periodic or realistic boundary conditions. In contrast to systems with short-ranged interactions, for L/ξ1L/\xi \gg 1 one observes leading finite-size contributions governed by power laws in LL due to the subleading long-ranged character of the interaction, where LL is the finite system size and ξ\xi is the correlation length.Comment: 11 pages, revtex, to appear in Phys. Rev. E 68 (2003

    Analytic Solution of Emden-Fowler Equation and Critical Adsorption in Spherical Geometry

    Full text link
    In the framework of mean-field theory the equation for the order-parameter profile in a spherically-symmetric geometry at the bulk critical point reduces to an Emden-Fowler problem. We obtain analytic solutions for the surface universality class of extraordinary transitions in d=4d=4 for a spherical shell, which may serve as a starting point for a pertubative calculation. It is demonstrated that the solution correctly reproduces the Fisher-de Gennes effect in the limit of the parallel-plate geometry.Comment: (to be published in Z. Phys. B), 7 pages, 1 figure, uuencoded postscript file, 8-9

    Critical dynamics in thin films

    Full text link
    Critical dynamics in film geometry is analyzed within the field-theoretical approach. In particular we consider the case of purely relaxational dynamics (Model A) and Dirichlet boundary conditions, corresponding to the so-called ordinary surface universality class on both confining boundaries. The general scaling properties for the linear response and correlation functions and for dynamic Casimir forces are discussed. Within the Gaussian approximation we determine the analytic expressions for the associated universal scaling functions and study quantitatively in detail their qualitative features as well as their various limiting behaviors close to the bulk critical point. In addition we consider the effects of time-dependent fields on the fluctuation-induced dynamic Casimir force and determine analytically the corresponding universal scaling functions and their asymptotic behaviors for two specific instances of instantaneous perturbations. The universal aspects of nonlinear relaxation from an initially ordered state are also discussed emphasizing the different crossovers that occur during this evolution. The model considered is relevant to the critical dynamics of actual uniaxial ferromagnetic films with symmetry-preserving conditions at the confining surfaces and for Monte Carlo simulations of spin system with Glauber dynamics and free boundary conditions.Comment: 64 pages, 21 figure

    Critical Casimir effect in films for generic non-symmetry-breaking boundary conditions

    Full text link
    Systems described by an O(n) symmetrical ϕ4\phi^4 Hamiltonian are considered in a dd-dimensional film geometry at their bulk critical points. A detailed renormalization-group (RG) study of the critical Casimir forces induced between the film's boundary planes by thermal fluctuations is presented for the case where the O(n) symmetry remains unbroken by the surfaces. The boundary planes are assumed to cause short-ranged disturbances of the interactions that can be modelled by standard surface contributions ϕ2\propto \bm{\phi}^2 corresponding to subcritical or critical enhancement of the surface interactions. This translates into mesoscopic boundary conditions of the generic symmetry-preserving Robin type nϕ=c˚jϕ\partial_n\bm{\phi}=\mathring{c}_j\bm{\phi}. RG-improved perturbation theory and Abel-Plana techniques are used to compute the LL-dependent part fresf_{\mathrm{res}} of the reduced excess free energy per film area AA\to\infty to two-loop order. When d<4d<4, it takes the scaling form fresD(c1LΦ/ν,c2LΦ/ν)/Ld1f_{\mathrm{res}}\approx D(c_1L^{\Phi/\nu},c_2L^{\Phi/\nu})/L^{d-1} as LL\to\infty, where cic_i are scaling fields associated with the surface-enhancement variables c˚i\mathring{c}_i, while Φ\Phi is a standard surface crossover exponent. The scaling function D(c1,c2)D(\mathsf{c}_1,\mathsf{c}_2) and its analogue D(c1,c2)\mathcal{D}(\mathsf{c}_1,\mathsf{c}_2) for the Casimir force are determined via expansion in ϵ=4d\epsilon=4-d and extrapolated to d=3d=3 dimensions. In the special case c1=c2=0\mathsf{c}_1=\mathsf{c}_2=0, the expansion becomes fractional. Consistency with the known fractional expansions of D(0,0) and D(0,0)\mathcal{D}(0,0) to order ϵ3/2\epsilon^{3/2} is achieved by appropriate reorganisation of RG-improved perturbation theory. For appropriate choices of c1c_1 and c2c_2, the Casimir forces can have either sign. Furthermore, crossovers from attraction to repulsion and vice versa may occur as LL increases.Comment: Latex source file, 40 pages, 9 figure

    Normal and Lateral Casimir Forces between Deformed Plates

    Get PDF
    The Casimir force between macroscopic bodies depends strongly on their shape and orientation. To study this geometry dependence in the case of two deformed metal plates, we use a path integral quantization of the electromagnetic field which properly treats the many-body nature of the interaction, going beyond the commonly used pairwise summation (PWS) of van der Waals forces. For arbitrary deformations we provide an analytical result for the deformation induced change in Casimir energy, which is exact to second order in the deformation amplitude. For the specific case of sinusoidally corrugated plates, we calculate both the normal and the lateral Casimir forces. The deformation induced change in the Casimir interaction of a flat and a corrugated plate shows an interesting crossover as a function of the ratio of the mean platedistance H to the corrugation length \lambda: For \lambda \ll H we find a slower decay \sim H^{-4}, compared to the H^{-5} behavior predicted by PWS which we show to be valid only for \lambda \gg H. The amplitude of the lateral force between two corrugated plates which are out of registry is shown to have a maximum at an optimal wavelength of \lambda \approx 2.5 H. With increasing H/\lambda \gtrsim 0.3 the PWS approach becomes a progressively worse description of the lateral force due to many-body effects. These results may be of relevance for the design and operation of novel microelectromechanical systems (MEMS) and other nanoscale devices.Comment: 20 pages, 5 figure

    Critical adsorption on curved objects

    Get PDF
    A systematic fieldtheoretic description of critical adsorption on curved objects such as spherical or rodlike colloidal particles immersed in a fluid near criticality is presented. The temperature dependence of the corresponding order parameter profiles and of the excess adsorption are calculated explicitly. Critical adsorption on elongated rods is substantially more pronounced than on spherical particles. It turns out that, within the context of critical phenomena in confined geometries, critical adsorption on a microscopically thin `needle' represents a distinct universality class of its own. Under favorable conditions the results are relevant for the flocculation of colloidal particles.Comment: 52 pages, 10 figure

    A global charter for the public\u27s health - The public\u27s health: the role, functions, competencies, education

    Get PDF
    Political leaders increasingly perceive health as being crucial to achieving growth, development, equity and stability throughout the world. Health is now understood as a product of complex and dynamic relations generated by numerous determinants at different levels of governance. Governments need to take into account the impact of social, environmental and behavioural health determinants, including economic constraints, living conditions, demographic changes and unhealthy lifestyles in many of the World Health Organization (WHO) Member States. This understanding and increasing globalization means it is very timely to review the role of (global) public health in this changing societal and political environment

    Generalized Casimir forces in non-equilibrium systems

    Get PDF
    In the present work we propose a method to determine fluctuation induced forces in non equilibrium systems. These forces are the analogue of the well known Casimir forces, which were originally introduced in Quantum Field theory and later extended to the area of Critical Phenomena. The procedure starts from the observation that many non equilibrium systems exhibit long-range correlations and the associated structure factors diverge in the long wavelength limit. The introduction of external bodies into such systems in general modifies the spectrum of these fluctuations and leads to the appearance of a net force between these bodies. The mechanism is illustrated by means of a simple example: a reaction diffusion equation with random noises.Comment: Submitted to Europhysics Letters. 7 pages, 2 figure
    corecore