10 research outputs found

    Prognostic significance of autoimmunity during treatment of melanoma with interferon

    No full text
    Since the pivotal cooperative group trials in the 1980’s-90’s,, high-dose interferon (HDI) has been the standard of adjuvant therapy. Despite multiple other trials evaluating potential new therapies in melanoma, HDI remains the only FDA-approved therapy for stage IIB and III melanoma. Initial reports from the more recent phase III international trials of modifications of the original HDI regimen linked the appearance of autoimmunity with improved outcomes of disease. Trials of high-dose interleukin-2, many years earlier, reported anecdotal observations that were consistent with the hypothesis that autoimmunity and clinical benefit of immunotherapies of melanoma are linked with one another. The only prospectively conducted study examining the appearance of clinical and laboratory evidence of autoimmunity during HDI therapy was published by Gogas and colleagues, demonstrating statistically significant impact on relapse-free survival and overall survival. Retrospectively conducted studies of different intermediate dosage regimens of interferon (IFN) have not fully confirmed the linkage of serological evidence of autoimmunity and improved survival outcomes. With the emergence of new immunotherapies in treatment of melanoma, this review highlights the importance of autoimmunity for future applications in melanoma and reviews significant differences of past studies evaluating the appearance of autoimmunity during IFN therapy in high-risk melanoma

    Convection-enhanced delivery of a topoisomerase I inhibitor (nanoliposomal topotecan) and a topoisomerase II inhibitor (pegylated liposomal doxorubicin) in intracranial brain tumor xenografts

    No full text
    Despite multimodal treatment options, the response and survival rates for patients with malignant gliomas remain dismal. Clinical trials with convection-enhanced delivery (CED) have recently opened a new window in neuro-oncology to the direct delivery of chemotherapeutics to the CNS, circumventing the blood-brain barrier and reducing systemic side effects. Our previous CED studies with liposomal chemotherapeutics have shown promising antitumor activity in rodent brain tumor models. In this study, we evaluated a combination of nanoliposomal topotecan (nLs-TPT) and pegylated liposomal doxorubicin (PLD) to enhance efficacy in our brain tumor models, and to establish a CED treatment capable of improving survival from malignant brain tumors. Both liposomal drugs decreased key enzymes involved in tumor cell replication in vitro. Synergistic effects of nLs-TPT and PLD on U87MG cell death were found. The combination displayed excellent efficacy in a CED-based survival study 10 days after tumor cell implantation. Animals in the control group and those in single-agent groups had a median survival of less than 30 days, whereas the combination group experienced a median survival of more than 90 days. We conclude that CED of two liposomal chemotherapeutics (nLs-TPT and PLD) may be an effective treatment option for malignant gliomas

    Convection-enhanced delivery of Ls-TPT enables an effective, continuous, low-dose chemotherapy against malignant glioma xenograft model1

    No full text
    Treatment of malignant gliomas represents one of the most formidable challenges in oncology. The combination of surgery, radiation, and chemotherapy yields median survivals of less than one year. Here we demonstrate the use of a minimally invasive surgical technique, convection-enhanced delivery (CED), for local administration of a novel nanoparticle liposome containing topotecan. CED of this liposomal topotecan (Ls-TPT) resulted in extended brain tissue retention (t½ = 1.5 days), whereas free topotecan was rapidly cleared (t½ = 0.1 days) after CED. The favorable pharmacokinetic profile of extended topotecan release for about seven days, along with biodistribution featuring perivascular accumulation of the nanoparticles, provided, in addition to the known topoisomerase I inhibition, an effective antiangiogenic therapy. In the rat intracranial U87MG tumor model, vascular targeting of Ls-TPT with CED was associated with reductions in laminin expression and vascular density compared to free topotecan or control treatments. A single CED treatment on day 7 showed that free topotecan conferred no survival benefit versus control. However, Ls-TPT produced a significant (P = 0.0002) survival benefit, with six of seven complete cures. Larger U87MG tumors, where CED of Ls-TPT on day 12 resulted in one of six cures, indicated the necessity to cover the entire tumor with the infused therapeutic agent. CED of Ls-TPT was also efficacious in the intracranial U251MG tumor model (P = 0.0005 versus control). We conclude that the combination of a novel nanoparticle Ls-TPT and CED administration was very effective in treating experimental brain tumors
    corecore