1,085 research outputs found

    Vacancy diffusion in the triangular lattice dimer model

    Get PDF
    We study vacancy diffusion on the classical triangular lattice dimer model, sub ject to the kinetic constraint that dimers can only translate, but not rotate. A single vacancy, i.e. a monomer, in an otherwise fully packed lattice, is always localized in a tree-like structure. The distribution of tree sizes is asymptotically exponential and has an average of 8.16 \pm 0.01 sites. A connected pair of monomers has a finite probability of being delocalized. When delocalized, the diffusion of monomers is anomalous:Comment: 15 pages, 27 eps figures. submitted to Physical Review

    Selective-pivot sampling of radial distribution functions in asymmetric liquid mixtures

    Full text link
    We present a Monte Carlo algorithm for selectively sampling radial distribution functions and effective interaction potentials in asymmetric liquid mixtures. We demonstrate its efficiency for hard-sphere mixtures, and for model systems with more general interactions, and compare our simulations with several analytical approximations. For interaction potentials containing a hard-sphere contribution, the algorithm yields the contact value of the radial distribution function.Comment: 5 pages, 5 figure

    Off-diagonal long-range order, cycle probabilities, and condensate fraction in the ideal Bose gas

    Full text link
    We discuss the relationship between the cycle probabilities in the path-integral representation of the ideal Bose gas, off-diagonal long-range order, and Bose--Einstein condensation. Starting from the Landsberg recursion relation for the canonic partition function, we use elementary considerations to show that in a box of size L^3 the sum of the cycle probabilities of length k >> L^2 equals the off-diagonal long-range order parameter in the thermodynamic limit. For arbitrary systems of ideal bosons, the integer derivative of the cycle probabilities is related to the probability of condensing k bosons. We use this relation to derive the precise form of the \pi_k in the thermodynamic limit. We also determine the function \pi_k for arbitrary systems. Furthermore we use the cycle probabilities to compute the probability distribution of the maximum-length cycles both at T=0, where the ideal Bose gas reduces to the study of random permutations, and at finite temperature. We close with comments on the cycle probabilities in interacting Bose gases.Comment: 6 pages, extensive rewriting, new section on maximum-length cycle

    Eigenvalue Distributions in Yang-Mills Integrals

    Get PDF
    We investigate one-matrix correlation functions for finite SU(N) Yang-Mills integrals with and without supersymmetry. We propose novel convergence conditions for these correlators which we determine from the one-loop perturbative effective action. These conditions are found to agree with non-perturbative Monte Carlo calculations for various gauge groups and dimensions. Our results yield important insights into the eigenvalue distributions rho(lambda) of these random matrix models. For the bosonic models, we find that the spectral densities rho(lambda) possess moments of all orders as N -> Infinity. In the supersymmetric case, rho(lambda) is a wide distribution with an N-independent asymptotic behavior rho(lambda) ~ lambda^(-3), lambda^(-7), lambda^(-15) for dimensions D=4,6,10, respectively

    Critical Current Peaks at 3BΦ3B_{\Phi} in Superconductors with Columnar Defects: Recrystalizing the Interstitial Glass

    Full text link
    The role of commensurability and the interplay of correlated disorder and interactions on vortex dynamics in the presence of columnar pins is studied via molecular dynamics simulations. Simulations of dynamics reveal substantial caging effects and a non-monotonic dependence of the critical current with enhancements near integer values of the matching field BϕB_{\phi} and 3Bϕ3B_{\phi} in agreement with experiments on the cuprates. We find qualitative differences in the phase diagram for small and large values of the matching field.Comment: 5 pages, 4 figures (3 color

    Driven interfaces in random media at finite temperature : is there an anomalous zero-velocity phase at small external force ?

    Full text link
    The motion of driven interfaces in random media at finite temperature TT and small external force FF is usually described by a linear displacement hG(t)V(F,T)th_G(t) \sim V(F,T) t at large times, where the velocity vanishes according to the creep formula as V(F,T)eK(T)/FμV(F,T) \sim e^{-K(T)/F^{\mu}} for F0F \to 0. In this paper, we question this picture on the specific example of the directed polymer in a two dimensional random medium. We have recently shown (C. Monthus and T. Garel, arxiv:0802.2502) that its dynamics for F=0 can be analyzed in terms of a strong disorder renormalization procedure, where the distribution of renormalized barriers flows towards some "infinite disorder fixed point". In the present paper, we obtain that for small FF, this "infinite disorder fixed point" becomes a "strong disorder fixed point" with an exponential distribution of renormalized barriers. The corresponding distribution of trapping times then only decays as a power-law P(τ)1/τ1+αP(\tau) \sim 1/\tau^{1+\alpha}, where the exponent α(F,T)\alpha(F,T) vanishes as α(F,T)Fμ\alpha(F,T) \propto F^{\mu} as F0F \to 0. Our conclusion is that in the small force region α(F,T)<1\alpha(F,T)<1, the divergence of the averaged trapping time τˉ=+\bar{\tau}=+\infty induces strong non-self-averaging effects that invalidate the usual creep formula obtained by replacing all trapping times by the typical value. We find instead that the motion is only sub-linearly in time hG(t)tα(F,T)h_G(t) \sim t^{\alpha(F,T)}, i.e. the asymptotic velocity vanishes V=0. This analysis is confirmed by numerical simulations of a directed polymer with a metric constraint driven in a traps landscape. We moreover obtain that the roughness exponent, which is governed by the equilibrium value ζeq=2/3\zeta_{eq}=2/3 up to some large scale, becomes equal to ζ=1\zeta=1 at the largest scales.Comment: v3=final versio

    Statistical mechanics of lossy compression using multilayer perceptrons

    Full text link
    Statistical mechanics is applied to lossy compression using multilayer perceptrons for unbiased Boolean messages. We utilize a tree-like committee machine (committee tree) and tree-like parity machine (parity tree) whose transfer functions are monotonic. For compression using committee tree, a lower bound of achievable distortion becomes small as the number of hidden units K increases. However, it cannot reach the Shannon bound even where K -> infty. For a compression using a parity tree with K >= 2 hidden units, the rate distortion function, which is known as the theoretical limit for compression, is derived where the code length becomes infinity.Comment: 12 pages, 5 figure

    Adding a Myers Term to the IIB Matrix Model

    Full text link
    We show that Yang-Mills matrix integrals remain convergent when a Myers term is added, and stay in the same topological class as the original model. It is possible to add a supersymmetric Myers term and this leaves the partition function invariant.Comment: 8 pages, v2 2 refs adde

    Mean properties and Free Energy of a few hard spheres confined in a spherical cavity

    Get PDF
    We use analytical calculations and event-driven molecular dynamics simulations to study a small number of hard sphere particles in a spherical cavity. The cavity is taken also as the thermal bath so that the system thermalizes by collisions with the wall. In that way, these systems of two, three and four particles, are considered in the canonical ensemble. We characterize various mean and thermal properties for a wide range of number densities. We study the density profiles, the components of the local pressure tensor, the interface tension, and the adsorption at the wall. This spans from the ideal gas limit at low densities to the high-packing limit in which there are significant regions of the cavity for which the particles have no access, due the conjunction of excluded volume and confinement. The contact density and the pressure on the wall are obtained by simulations and compared to exact analytical results. We also obtain the excess free energy for N=4, by using a simulated-assisted approach in which we combine simulation results with the knowledge of the exact partition function for two and three particles in a spherical cavity.Comment: 11 pages, 9 figures and two table
    corecore