2,253 research outputs found

    Toxic alcohols

    Get PDF

    The Effect of Surface Roughness on the Frequency of Surface Plasmons

    Get PDF
    The theory of photoemission from metals is still in the state of development. There are relatively few rigorous calculations of photoemission spectra from metals. Much of the work which is being done currently is addressed to the question of the role of many-body interactions in this type of problem, and it is, indeed, a theoretical question on ideal metal surfaces of considerable complexity. The introduction of surface roughness requires a model theory, and it requires some model concept. Now, the thing I am going to address myself to in this talk is to the role of surface plasmons in enhancing the photoemission of metals

    Review of Theories of Scattering of Elastic Waves by Cracks

    Get PDF
    The ultrasonic detection of cracks in the interior of an elastic solid by the use of surface transducers is a fundamental NDE problem. The presence of cracks may be detected either by observing the back scattered elastic waves using the launching transducer as a receiver or by observing obliquely scattered waves with a separate receiving transducer located elsewhere on the surface. Unfortunately, most of the theoretical work on the scattering of elastic waves from cracks has been confined to the case of a crack in an unbounded elastic solid, a situation far different from the experimental one. Even in that case, exact results are available only for the crack occupying a half plane. Exact results for cracks having finite surface area, such as a penny shaped cracks, are not available in detail, although many approximate calculations have been published, particularly in the low frequency limit

    Escaping from nonhyperbolic chaotic attractors

    Full text link
    We study the noise-induced escape process from chaotic attractors in nonhyperbolic systems. We provide a general mechanism of escape in the low noise limit, employing the theory of large fluctuations. Specifically, this is achieved by solving the variational equations of the auxiliary Hamiltonian system and by incorporating the initial conditions on the chaotic attractor unambiguously. Our results are exemplified with the H{\'e}non and the Ikeda map and can be implemented straightforwardly to experimental data.Comment: replaced with published versio

    Consequences and therapy of the metabolic acidosis of chronic kidney disease

    Get PDF
    Metabolic acidosis is common in patients with chronic kidney disease (CKD), particularly once the glomerular filtration rate (GFR) falls below 25 ml/min/1.73 m2. It is usually mild to moderate in magnitude with the serum bicarbonate concentration ([HCO3−]) ranging from 12 to 23 mEq/l. Even so, it can have substantial adverse effects, including development or exacerbation of bone disease, growth retardation in children, increased muscle degradation with muscle wasting, reduced albumin synthesis with a predisposition to hypoalbuminemia, resistance to the effects of insulin with impaired glucose tolerance, acceleration of the progression of CKD, stimulation of inflammation, and augmentation of β2-microglobulin production. Also, its presence is associated with increased mortality. The administration of base to patients prior to or after initiation of dialysis leads to improvement in many of these adverse effects. The present recommendation by the National Kidney Foundation Kidney Disease Outcomes Quality Initiative (NKF KDOQI) is to raise serum [HCO3−] to ≥22 mEq/l, whereas Caring for Australians with Renal Impairment (CARI) recommends raising serum [HCO3−] to >22 mEq/l. Base administration can potentially contribute to volume overload and exacerbation of hypertension as well as to metastatic calcium precipitation in tissues. However, sodium retention is less when given as sodium bicarbonate and sodium chloride intake is concomitantly restricted. Results from various studies suggest that enhanced metastatic calcification is unlikely with the pH values achieved during conservative base administration, but the clinician should be careful not to raise serum [HCO3−] to values outside the normal range

    Simulation of Fluid Flow During Direct Synthesis of H2_{2}O2_{2} in a Microstructured Membrane Reactor

    Get PDF
    A microstructured membrane reactor has been developed to overcome the safety and productivity challenge of the direct synthesis of hydrogen peroxide. A single membrane is employed for separate, continuous dosage of the gaseous reactants hydrogen and oxygen to the solid catalyst present in the aqueous solvent. Using a custom OpenFOAM® model, the impact of catalyst‐coated static mixers with different mixer geometries is studied. It is demonstrated that the custom fluid guiding elements outperform the investigated commercial static mixer under the flow conditions relevant to this application

    White matter changes and confrontation naming in retired aging national football league athletes

    Get PDF
    Using diffusion tensor imaging (DTI), we assessed the relationship of white matter integrity and performance on the Boston Naming Test (BNT) in a group of retired professional football players and a control group. We examined correlations between fractional anisotropy (FA) and mean diffusivity (MD) with BNT T-scores in an unbiased voxelwise analysis processed with tract-based spatial statistics (TBSS). We also analyzed the DTI data by grouping voxels together as white matter tracts and testing each tract's association with BNT T-scores. Significant voxelwise correlations between FA and BNT performance were only seen in the retired football players (p < 0.02). Two tracts had mean FA values that significantly correlated with BNT performance: forceps minor and forceps major. White matter integrity is important for distributed cognitive processes, and disruption correlates with diminished performance in athletes exposed to concussive and subconcussive brain injuries, but not in controls without such exposure

    Airports at Risk: The Impact of Information Sources on Security Decisions

    Get PDF
    Security decisions in high risk organizations such as airports involve obtaining ongoing and frequent information about potential threats. Utilizing questionnaire survey data from a sample of airport employees in European Airports across the continent, we analyzed how both formal and informal sources of security information affect employee's decisions to comply with the security rules and directives. This led us to trace information network flows to assess its impact on the degree employees making security decisions comply or deviate with the prescribed security rules. The results of the multivariate analysis showed that security information obtained through formal and informal networks differentially determine if employee will comply or not with the rules. Information sources emanating from the informal network tends to encourage employees to be more flexible in their security decisions while formal sources lead to be more rigid with complying with rules and protocols. These results suggest that alongside the formal administrative structure of airports, there exists a diverse and pervasiveness set of informal communications networks that are a potent factor in determining airport security levels

    Testing Electrostatic Complementarity in Enzyme Catalysis: Hydrogen Bonding in the Ketosteroid Isomerase Oxyanion Hole

    Get PDF
    A longstanding proposal in enzymology is that enzymes are electrostatically and geometrically complementary to the transition states of the reactions they catalyze and that this complementarity contributes to catalysis. Experimental evaluation of this contribution, however, has been difficult. We have systematically dissected the potential contribution to catalysis from electrostatic complementarity in ketosteroid isomerase. Phenolates, analogs of the transition state and reaction intermediate, bind and accept two hydrogen bonds in an active site oxyanion hole. The binding of substituted phenolates of constant molecular shape but increasing p K (a) models the charge accumulation in the oxyanion hole during the enzymatic reaction. As charge localization increases, the NMR chemical shifts of protons involved in oxyanion hole hydrogen bonds increase by 0.50–0.76 ppm/p K (a) unit, suggesting a bond shortening of ˜0.02 Å/p K (a) unit. Nevertheless, there is little change in binding affinity across a series of substituted phenolates (ΔΔG = −0.2 kcal/mol/p K (a) unit). The small effect of increased charge localization on affinity occurs despite the shortening of the hydrogen bonds and a large favorable change in binding enthalpy (ΔΔH = −2.0 kcal/mol/p K (a) unit). This shallow dependence of binding affinity suggests that electrostatic complementarity in the oxyanion hole makes at most a modest contribution to catalysis of ˜300-fold. We propose that geometrical complementarity between the oxyanion hole hydrogen-bond donors and the transition state oxyanion provides a significant catalytic contribution, and suggest that KSI, like other enzymes, achieves its catalytic prowess through a combination of modest contributions from several mechanisms rather than from a single dominant contribution
    corecore