184 research outputs found

    The Radio Light Curve of the Gamma-Ray Nova in V407 Cyg: Thermal Emission from the Ionized Symbiotic Envelope, Devoured from Within by the Nova Blast

    Get PDF
    We present multi-frequency radio observations of the 2010 nova event in the symbiotic binary V407 Cygni, obtained with the Karl G. Jansky Very Large Array and spanning 1-45 GHz and 17-770 days following discovery. This nova---the first ever detected in gamma rays---shows a radio light curve dominated by the wind of the Mira giant companion, rather than the nova ejecta themselves. The radio luminosity grew as the wind became increasingly ionized by the nova outburst, and faded as the wind was violently heated from within by the nova shock. This study marks the first time that this physical mechanism has been shown to dominate the radio light curve of an astrophysical transient. We do not observe a thermal signature from the nova ejecta or synchrotron emission from the shock, due to the fact that these components were hidden behind the absorbing screen of the Mira wind. We estimate a mass loss rate for the Mira wind of Mdot_w ~ 10^-6 M_sun/yr. We also present the only radio detection of V407 Cyg before the 2010 nova, gleaned from unpublished 1993 archival VLA data, which shows that the radio luminosity of the Mira wind varies by a factor of >~20 even in quiescence. Although V407 Cyg likely hosts a massive accreting white dwarf, making it a candidate progenitor system for a Type Ia supernova, the dense and radially continuous circumbinary material surrounding V407 Cyg is inconsistent with observational constraints on the environments of most Type Ia supernovae.Comment: Resubmitted to ApJ after incorporating referee's comment

    Radio studies of novae: a current status report and highlights of new results

    Full text link
    Novae, which are the sudden visual brightening triggered by runaway thermonuclear burning on the surface of an accreting white dwarf, are fairly common and bright events. Despite their astronomical significance as nearby laboratories for the study of nuclear burning and accretion phenomena, many aspects of these common stellar explosions are observationally not well-constrained and remain poorly understood. Radio observations, modeling and interpretation can potentially play a crucial role in addressing some of these puzzling issues. In this review on radio studies of novae, we focus on the possibility of testing and improving the nova models with radio observations, and present a current status report on the progress in both the observational front and theoretical developments. We specifically address the issues of accurate estimation of ejecta mass, multi-phase and complex ejection phenomena, and the effect of a dense environment around novae. With highlights of new observational results, we illustrate how radio observations can shed light on some of these long-standing puzzles.Comment: 19 pages, 4 figures. Review article published in the Bulletin of the Astronomical Society of India (BASI) special issue on nova

    The 2011 Outburst of Recurrent Nova T Pyx: X-ray Observations Expose the White Dwarf Mass and Ejection Dynamics

    Get PDF
    The recurrent nova T Pyx underwent its sixth historical outburst in 2011, and became the subject of an intensive multi-wavelength observational campaign. We analyze data from the Swift and Suzaku satellites to produce a detailed X-ray light curve augmented by epochs of spectral information. X-ray observations yield mostly non-detections in the first four months of outburst, but both a super-soft and hard X-ray component rise rapidly after Day 115. The super-soft X-ray component, attributable to the photosphere of the nuclear-burning white dwarf, is relatively cool (~45 eV) and implies that the white dwarf in T Pyx is significantly below the Chandrasekhar mass (~1 M_sun). The late turn-on time of the super-soft component yields a large nova ejecta mass (>~10^-5 M_sun), consistent with estimates at other wavelengths. The hard X-ray component is well fit by a ~1 keV thermal plasma, and is attributed to shocks internal to the 2011 nova ejecta. The presence of a strong oxygen line in this thermal plasma on Day 194 requires a significantly super-solar abundance of oxygen and implies that the ejecta are polluted by white dwarf material. The X-ray light curve can be explained by a dual-phase ejection, with a significant delay between the first and second ejection phases, and the second ejection finally released two months after outburst. A delayed ejection is consistent with optical and radio observations of T Pyx, but the physical mechanism producing such a delay remains a mystery.Comment: Re-submitted to ApJ after revision

    Response of Soil Respiration to Changes in Soil temperature and water table level in Drained and Restored Peatlands of the Southeastern United States

    Get PDF
    Background Extensive drainage of peatlands in the southeastern United States coastal plain for the purposes of agriculture and timber harvesting has led to large releases of soil carbon as carbon dioxide (CO2) due to enhanced peat decomposition. Growth in mechanisms that provide financial incentives for reducing emissions from land use and land-use change could increase funding for hydrological restoration that reduces peat CO2 emissions from these ecosystems. Measuring soil respiration and physical drivers across a range of site characteristics and land use histories is valuable for understanding how CO2 emissions from peat decomposition may respond to raising water table levels. We combined measurements of total soil respiration, depth to water table from soil surface, and soil temperature from drained and restored peatlands at three locations in eastern North Carolina and one location in southeastern Virginia to investigate relationships among total soil respiration and physical drivers, and to develop models relating total soil respiration to parameters that can be easily measured and monitored in the field. Results Total soil respiration increased with deeper water tables and warmer soil temperatures in both drained and hydrologically restored peatlands. Variation in soil respiration was more strongly linked to soil temperature at drained (R2 = 0.57, p \u3c 0.0001) than restored sites (R2 = 0.28, p \u3c 0.0001). Conclusions The results suggest that drainage amplifies the impact of warming temperatures on peat decomposition. Proxy measurements for estimation of CO2 emissions from peat decomposition represent a considerable cost reduction compared to direct soil flux measurements for land managers contemplating the potential climate impact of restoring drained peatland sites. Research can help to increase understanding of factors influencing variation in soil respiration in addition to physical variables such as depth to water table and soil temperature. Backgroun

    Filifactor alocis infection and inflammatory responses in the mouse subcutaneous chamber model

    Get PDF
    Recent microbiome studies have implicated a role for Filifactor alocis in periodontal disease. In this study, we investigated the colonization and survival properties of F. alocis in a mouse subcutaneous chamber model of infection and characterized host innate immune responses. An infection of 10(9) F. alocis successfully colonized all chambers; however, the infection was cleared after 72 h. F. alocis elicited a local inflammatory response with neutrophils recruited into the chambers at 2 h postinfection along with an increase in levels of the proinflammatory cytokines interleukin 1β (IL-1β), IL-6, and tumor necrosis factor (TNF). F. alocis also induced apoptosis in chamber epithelial cells and neutrophils. Consistent with resolution of infection, neutrophil numbers and cytokine levels returned to baseline by 72 h. Fluorescent in situ hybridization (FISH) and quantitative PCR demonstrated that F. alocis exited the chambers and spread to the spleen, liver, lung, and kidney. Massive neutrophil infiltration was observed in the spleen and lungs, and the recruited neutrophils were in close proximity to the infecting bacteria. Significant epithelial injury was observed in the kidneys. Infection of all tissues was resolved after 7 days. This first in vivo study of the pathogenicity of F. alocis shows that in the chamber model the organism can establish a proinflammatory, proapoptotic local infection which is rapidly resolved by the host concordant with neutrophil influx. Moreover, F. alocis can spread to, and transiently infect, remote tissues where neutrophils can also be recruited

    A Novel Synthetic Smoothened Antagonist Transiently Inhibits Pancreatic Adenocarcinoma Xenografts in a Mouse Model

    Get PDF
    Hedgehog (Hh) signaling is over-activated in several solid tumors where it plays a central role in cell growth, stroma recruitment and tumor progression. In the Hh signaling pathway, the Smoothened (SMO) receptor comprises a primary drug target with experimental small molecule SMO antagonists currently being evaluated in clinical trials.Using Shh-Light II (Shh-L2) and alkaline phosphatase (AP) based screening formats on a "focused diversity" library we identified a novel small molecule inhibitor of the Hh pathway, MS-0022 (2-bromo-N-(4-(8-methylimidazo[1,2-a]pyridin-2-yl)phenyl)benzamide). MS-0022 showed effective Hh signaling pathway inhibition at the level of SMO in the low nM range, and Hh pathway inhibition downstream of Suppressor of fused (SUFU) in the low µM range. MS-0022 reduced growth in the tumor cell lines PANC-1, SUIT-2, PC-3 and FEMX in vitro. MS-0022 treatment led to a transient delay of tumor growth that correlated with a reduction of stromal Gli1 levels in SUIT-2 xenografts in vivo.We document the in vitro and in vivo efficacy and bioavailability of a novel small molecule SMO antagonist, MS-0022. Although MS-0022 primarily interferes with Hh signaling at the level of SMO, it also has a downstream inhibitory effect and leads to a stronger reduction of growth in several tumor cell lines when compared to related SMO antagonists

    The movement ecology of seagrasses

    Get PDF
    A movement ecology framework is applied to enhance our understanding of the causes, mechanisms and consequences of movement in seagrasses: marine, clonal, flowering plants. Four life-history stages of seagrasses can move: pollen, sexual propagules, vegetative fragments and the spread of individuals through clonal growth. Movement occurs on the water surface, in the water column, on or in the sediment, via animal vectors and through spreading clones. A capacity for long-distance dispersal and demographic connectivity over multiple timeframes is the novel feature of the movement ecology of seagrasses with significant evolutionary and ecological consequences. The space–time movement footprint of different life-history stages varies. For example, the distance moved by reproductive propagules and vegetative expansion via clonal growth is similar, but the timescales range exponentially, from hours to months or centuries to millennia, respectively. Consequently, environmental factors and key traits that interact to influence movement also operate on vastly different spatial and temporal scales. Six key future research areas have been identified
    • …
    corecore