283 research outputs found

    Long-run growth expectations and "global imbalances" : [January 5, 2011]

    Get PDF
    This paper examines to what extent the build-up of "global imbalances" since the mid-1990s can be explained in a purely real open-economy DSGE model in which agents’ perceptions of long-run growth are based on filtering observed changes in productivity. We show that long-run growth estimates based on filtering U.S. productivity data comove strongly with long-horizon survey expectations. By simulating the model in which agents filter data on U.S. productivity growth, we closely match the U.S. current account evolution. Moreover, with household preferences that control the wealth effect on labor supply, we can generate output movements in line with the data. JEL Classification: E13, E32, D83, O4

    On-the-job search and the cyclical dynamics of the labor market

    Get PDF
    We show how on-the-job search and the propagation of shocks to the economy are intricately linked. Rising search by employed workers in a boom amplifies the incentives of firms to post vacancies. In turn, more vacancies increases job search. By keeping job creation costs low for firms, on-the-job search greatly amplifies shocks. In our baseline calibration, this allows the model to generate fluctuations of unemployment, vacancies, and labor productivity whose magnitudes are close to the data, and leads output to be highly autocorrelated. JEL Classification: E21, E32, J64business cycle, job-to-job mobility, propagation, Search and matching, worker flows Beveridge curve

    Tumor Necrosis Factor Alpha and Insulin-Like Growth Factor 1 Induced Modifications of the Gene Expression Kinetics of Differentiating Skeletal Muscle Cells

    Get PDF
    Introduction TNF-alpha levels are increased during muscle wasting and chronic muscle degeneration and regeneration processes, which are characteristic for primary muscle disorders. Pathologically increased TNF-alpha levels have a negative effect on muscle cell differentiation efficiency, while IGF1 can have a positive effect;therefore, we intended to elucidate the impact of TNF-alpha and IGF1 on gene expression during the early stages of skeletal muscle cell differentiation. Methodology/Principal Findings This study presents gene expression data of the murine skeletal muscle cells PMI28 during myogenic differentiation or differentiation with TNF-alpha or IGF1 exposure at 0 h, 4 h, 12 h, 24 h, and 72 h after induction. Our study detected significant coregulation of gene sets involved in myoblast differentiation or in the response to TNF-alpha. Gene expression data revealed a time-and treatment-dependent regulation of signaling pathways, which are prominent in myogenic differentiation. We identified enrichment of pathways, which have not been specifically linked to myoblast differentiation such as doublecortin-like kinase pathway associations as well as enrichment of specific semaphorin isoforms. Moreover to the best of our knowledge, this is the first description of a specific inverse regulation of the following genes in myoblast differentiation and response to TNF-alpha: Aknad1, Cmbl, Sepp1, Ndst4, Tecrl, Unc13c, Spats2l, Lix1, Csdc2, Cpa1, Parm1, Serpinb2, Aspn, Fibin, Slc40a1, Nrk, and Mybpc1. We identified a gene subset (Nfkbia, Nfkb2, Mmp9, Mef2c, Gpx, and Pgam2),which is robustly regulated by TNF-alpha across independent myogenic differentiation studies. Conclusions This is the largest dataset revealing the impact of TNF-alpha or IGF1 treatment on gene expression kinetics of early in vitro skeletal myoblast differentiation. We identified novel mRNAs, which have not yet been associated with skeletal muscle differentiation or response to TNF-alpha. Results of this study may facilitate the understanding of transcriptomic networks underlying inhibited muscle differentiation in inflammatory diseases

    Software that goes with the flow in systems biology

    Get PDF
    A recent article in BMC Bioinformatics describes new advances in workflow systems for computational modeling in systems biology. Such systems can accelerate, and improve the consistency of, modeling through automation not only at the simulation and results-production stages, but also at the model-generation stage. Their work is a harbinger of the next generation of more powerful software for systems biologists

    A microchip optomechanical accelerometer

    Get PDF
    The monitoring of accelerations is essential for a variety of applications ranging from inertial navigation to consumer electronics. The basic operation principle of an accelerometer is to measure the displacement of a flexibly mounted test mass; sensitive displacement measurement can be realized using capacitive, piezo-electric, tunnel-current, or optical methods. While optical readout provides superior displacement resolution and resilience to electromagnetic interference, current optical accelerometers either do not allow for chip-scale integration or require bulky test masses. Here we demonstrate an optomechanical accelerometer that employs ultra-sensitive all-optical displacement read-out using a planar photonic crystal cavity monolithically integrated with a nano-tethered test mass of high mechanical Q-factor. This device architecture allows for full on-chip integration and achieves a broadband acceleration resolution of 10 \mu g/rt-Hz, a bandwidth greater than 20 kHz, and a dynamic range of 50 dB with sub-milliwatt optical power requirements. Moreover, the nano-gram test masses used here allow for optomechanical back-action in the form of cooling or the optical spring effect, setting the stage for a new class of motional sensors.Comment: 16 pages, 9 figure

    Mechanical Thrombectomy in Patients With Milder Strokes and Large Vessel Occlusions A Multicenter Matched Analysis

    Get PDF
    Background and Purpose-We aimed to describe the safety and efficacy of immediate mechanical thrombectomy (MT) in patients with large vessel occlusions and low National Institutes of Health Stroke Scale (NIHSS) versus best medical management. Methods-Patients from prospectively collected databases of 6 international comprehensive stroke centers with large vessel occlusions (distal intracranial internal carotid, middle cerebral artery-M1 and M2 segments, or basilar artery with or without tandem occlusions) and NIHSS 0 to 5 were identified and divided into 2 groups for analysis: immediate MT or initial best medical management which included rescue MT after neurological deterioration (best medical management-MT). Uni- and multivariate analyses and patient-level matching for age, baseline NIHSS, and occlusion site were performed to compare baseline and outcome variables across the 2 groups. The primary outcome was defined as good outcome (modified Rankin Scale score, 0-2) at day 90. Safety outcome was symptomatic intracranial hemorrhage as defined by the ECASS (European Cooperative Acute Stroke Study) II and mortality at day 90. Results: Compared with best medical management-MT (n=220), patients with immediate MT (n=80) were younger (65.3 +/- 13.5 versus 69.5 +/- 14.1;P=0.021), had more often atrial fibrillation (44.8% versus 28.2%;P=0.012), higher baseline NIHSS (4, 0-5 versus 3, 0-5;P=0.005), higher Alberta Stroke Program Early CT Score (10, 7-10 versus 10, 5-10;P=0.023), more middle cerebral artery-M1, and less middle cerebral artery-M2 (41.3% versus 21.9% and 28.8% versus 49.3%;P=0.016) occlusions. The adjusted odds ratio for good outcome was 3.1 (95% CI, 1.4-6.9) favoring immediate MT. In the matched analysis, there was a 14.4% absolute difference in good outcome (84.4% versus 70.1%;P=0.03) at day 90 favoring immediate MT. There were no safety concerns. Conclusions: Our retrospective, pilot analysis suggests that immediate thrombectomy in large vessel occlusions patients with low NIHSS on presentation may be safe and has the potential to result in improved outcomes. Randomized clinical trials are warranted to establish the optimal management for this patient population

    Spin dynamics of molecular nanomagnets fully unraveled by four-dimensional inelastic neutron scattering

    Full text link
    Molecular nanomagnets are among the first examples of spin systems of finite size and have been test-beds for addressing a range of elusive but important phenomena in quantum dynamics. In fact, for short-enough timescales the spin wavefunctions evolve coherently according to the an appropriate cluster spin-Hamiltonian, whose structure can be tailored at the synthetic level to meet specific requirements. Unfortunately, to this point it has been impossible to determine the spin dynamics directly. If the molecule is sufficiently simple, the spin motion can be indirectly assessed by an approximate model Hamiltonian fitted to experimental measurements of various types. Here we show that recently-developed instrumentation yields the four-dimensional inelastic-neutron scattering function S(Q,E) in vast portions of reciprocal space and enables the spin dynamics to be determined with no need of any model Hamiltonian. We exploit the Cr8 antiferromagnetic ring as a benchmark to demonstrate the potential of this new approach. For the first time we extract a model-free picture of the quantum dynamics of a molecular nanomagnet. This allows us, for example, to examine how a quantum fluctuation propagates along the ring and to directly test the degree of validity of the N\'{e}el-vector-tunneling description of the spin dynamics

    Ultraviolet radiation shapes seaweed communities

    Get PDF
    • …
    corecore