49 research outputs found

    Mycosis fungoides and Sézary syndrome: 2019 update on diagnosis, risk‐stratification, and management

    Full text link
    Disease OverviewCutaneous T‐cell lymphomas (CTCL) are a heterogenous group of T‐cell neoplasms involving the skin, the majority of which may be classified as Mycosis fungoides (MF) or Sézary syndrome (SS).DiagnosisThe diagnosis of MF or SS requires the integration of clinical and histopathologic data.Risk‐Adapted TherapyTNMB (tumor, node, metastasis, blood) staging remains the most important prognostic factor in MF/SS and forms the basis for a “risk‐adapted,” multi‐disciplinary approach to treatment. For patients with disease limited to the skin, skin‐directed therapies are preferred, as both disease‐specific and overall survival for these patients is favorable. In contrast, patients with advanced‐stage disease with significant nodal, visceral or blood involvement are generally approached with systemic therapies. These include biologic‐response modifiers, histone deacetylase (HDAC) inhibitors, or antibody‐based strategies, in an escalating fashion. In highly‐selected patients, allogeneic stem‐cell transplantation may be considered, as this may be curative in some patients.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151292/1/ajh25577_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151292/2/ajh25577.pd

    Simple and sensitive HPLC-UV method for determination of bexarotene in rat plasma

    Get PDF
    Bexarotene is currently marketed for treatment of cutaneous T-cell lymphoma and there has been growing interest in its therapeutic effectiveness for other cancers. Neuroprotective effects of bexarotene have also been reported. In this study, a simple, sensitive and cost-efficient bioanalytical method for determination of bexarotene in rat plasma was developed and fully validated. The method utilises protein precipitation with acetonitrile and liquid-liquid extraction with n-hexane-ethyl acetate (10:1, v/v). An HPLC-UV system with a Waters Atlantis C18 column and a mobile phase of acetonitrile-ammonium acetate buffer (10 mM, pH 4.1) at a ratio of 75:25 (v/v), flow rate 0.2 mL/min was used. Chromatograms were observed by a UV detector with wavelength set to 259 nm. Intra- and inter-day validations were performed and sample stability tests were conducted at various conditions. The applicability of the method was demonstrated by a pharmacokinetic study in rats. Intravenous bolus dose of 2.5 mg/kg was administered to rats and samples were obtained at predetermined time points. As a result, pharmacokinetic parameters of AUCinf (4668 ± 452 h ng/mL), C0 (6219 ± 1068 ng/mL) and t1/2 (1.15 ± 0.02 h) were obtained. In addition, the developed method was further applied to human and mouse plasma to assess the suitability of the method for samples from other species

    Interferon and Biologic Signatures in Dermatomyositis Skin: Specificity and Heterogeneity across Diseases

    Get PDF
    BACKGROUND: Dermatomyositis (DM) is an autoimmune disease that mainly affects the skin, muscle, and lung. The pathogenesis of skin inflammation in DM is not well understood. METHODOLOGY AND FINDINGS: We analyzed genome-wide expression data in DM skin and compared them to those from healthy controls. We observed a robust upregulation of interferon (IFN)-inducible genes in DM skin, as well as several other gene modules pertaining to inflammation, complement activation, and epidermal activation and differentiation. The interferon (IFN)-inducible genes within the DM signature were present not only in DM and lupus, but also cutaneous herpes simplex-2 infection and to a lesser degree, psoriasis. This IFN signature was absent or weakly present in atopic dermatitis, allergic contact dermatitis, acne vulgaris, systemic sclerosis, and localized scleroderma/morphea. We observed that the IFN signature in DM skin appears to be more closely related to type I than type II IFN based on in vitro IFN stimulation expression signatures. However, quantitation of IFN mRNAs in DM skin shows that the majority of known type I IFNs, as well as IFN g, are overexpressed in DM skin. In addition, both IFN-beta and IFN-gamma (but not other type I IFN) transcript levels were highly correlated with the degree of the in vivo IFN transcriptional response in DM skin. CONCLUSIONS AND SIGNIFICANCE: As in the blood and muscle, DM skin is characterized by an overwhelming presence of an IFN signature, although it is difficult to conclusively define this response as type I or type II. Understanding the significance of the IFN signature in this wide array of inflammatory diseases will be furthered by identification of the nature of the cells that both produce and respond to IFN, as well as which IFN subtype is biologically active in each diseased tissue

    Capecitabine induced inflammation of actinic keratoses

    No full text
    corecore