542 research outputs found

    New Constraints on Neutrino Oscillations in Vacuum as a Possible Solution of the Solar Neutrino Problem

    Full text link
    Two-neutrino oscillations in vacuum are studied as a possible solution of the solar neutrino problem. New constraints on the parameter sn2, characterizing the mixing of the electron neutrino with another active or sterile neutrino, as well as on the mass--squared difference, dm2, of their massive neutrino components, are derived using the latest results from the four solar neutrino experiments. Oscillations into a sterile neutrino are ruled out at 99 % C.L. by the observed mean event rates even if one includes the uncertainties of the standard solar model predictions in the analysis.Comment: 10 pages + 3 figures attached as postscript files, IFP-480-UNC and Ref. SISSA 177/93/EP (Updated Version which takes into account the latest GALLEX results from 30 runs

    How Well Do We (and Will We) Know Solar Neutrino Fluxes and Oscillation Parameters?

    Get PDF
    Assuming neutrino oscillations occur, the pp electron neutrino flux is uncertain by at least a factor of two, the 8B{\rm ^8B} flux by a factor of five, and the 7Be{\rm ^7Be} flux by a factor of forty-five. Calculations of the expected results of future solar neutrino experiments (SuperKamiokande, SNO, BOREXINO, ICARUS, HELLAZ, and HERON) are used to illustrate the extent to which these experiments will restrict the range of the allowed neutrino mixing parameters. We present an improved formulation of the ``luminosity constraint'' and show that at 95\% confidence limit this constraint establishes the best available limits on the rate of creation of pp neutrinos in the solar interior and provides the best upper limit to the 7Be{\rm ^7Be} neutrino flux.Comment: 37 pages, uuencoded Z-compressed postscript file (with figures); Submitted to Physical Review

    A Study of the Day - Night Effect for the Super - Kamiokande Detector: I. Time Averaged Solar Neutrino Survival Probability

    Full text link
    This is the first of two articles aimed at providing comprehensive predictions for the day-night (D-N) effect for the Super-Kamiokande detector in the case of the MSW \nu_e \to \numt transition solution of the solar neutrino problem. The one-year averaged probability of survival of the solar \nue crossing the Earth mantle, the core, the inner 2/3 of the core, and the (core + mantle) is calculated with high precision (better than 1%) using the elliptical orbit approximation (EOA) to describe the Earth motion around the Sun. Results for the survival probability in the indicated cases are obtained for a large set of values of the MSW transition parameters Δm2\Delta m^2 and sin22ΞVsin^22\theta_{V} from the ``conservative'' regions of the MSW solution, derived by taking into account possible relatively large uncertainties in the values of the 8^{8}B and 7^{7}Be neutrino fluxes. Our results show that the one-year averaged D-N asymmetry in the Îœe\nu_e survival probability for neutrinos crossing the Earth core can be, in the case of sin22ΞV≀0.13sin^22 \theta_{V} \leq 0.13, larger than the asymmetry in the probability for (only mantle crossing + core crossing) neutrinos by a factor of up to six. The enhancement is larger in the case of neutrinos crossing the inner 2/3 of the core. This indicates that the Super-Kamiokande experiment might be able to test the sin22ΞV≀0.01sin^22\theta_{V} \leq 0.01 region of the MSW solution of the solar neutrino problem by performing selective D-N asymmetry measurements.Comment: LaTeX2e - 18 Text Pages + 21 figures = 39 Pages. - Figures in PS + text file sk1b14.tex requires two auxiliary files (included

    Three-Neutrino Mixing and Combined Vacuum Oscillations and MSW Transitions of Solar Neutrinos

    Get PDF
    Assuming three flavour neutrino mixing takes place in vacuum, we investigate the possibility that the solar nu_e take part in MSW transitions in the Sun due to Delta m^2_{31} from 10^{-7} eV^2 to 10^{-4} eV^2, followed by long wave length vacuum oscillations on the way to the Earth, triggered by Delta m^2_{21} (or Delta m^2_{32}) from 10^{-12} eV^2 to 10^{-10} eV^2, Delta m^2_{31} and Delta m^2_{21} (Delta m^2_{32}) being the corresponding neutrino mass squared differences. The solar nu_e survival probability is shown to be described in this case by a simple analytic expression. Depending on whether the vacuum oscillations are due to Delta m^2_{21} or Delta m^2_{32} there are two very different types of interplay between the MSW transitions and the vacuum oscillations of the solar nu_e. Performing an analysis of the most recently published solar neutrino data we have found several qualitatively new solutions of the solar neutrino problem of the hybrid MSW transitions + vacuum oscillations type. The solutions differ in the way the pp, 7Be and 8B neutrino fluxes are affected by the transitions in the Sun and the oscillations in vacuum. The specific features of the new solutions are discussed.Comment: 37 pages Latex, 16 Postscript Figure

    On The Vacuum Oscillation Solution of The Solar Neutrino Problem

    Get PDF
    We study the stability of the two--neutrino vacuum oscillation solution of the solar neutrino problem with respect to changes of the total fluxes of boron and beryllium neutrinos. For any value of ΊBe\Phi_{{\rm Be}} from the interval 0.7ΊBeBP≀ΊBe≀1.3ΊBeBP0.7\Phi^{{\rm BP}}_{{\rm Be}}\leq \Phi_{{\rm Be}} \leq 1.3\Phi^{{\rm BP}}_{{\rm Be}} the solar Îœe\nu_e oscillations into an active neutrino provide at 95\% C.L. a description of the existing solar neutrino data for ΊB≅(0.35−3.4)ΊBBP\Phi_{{\rm B}} \cong (0.35 - 3.4) \Phi^{{\rm BP}}_{{\rm B}}, ΊBBP\Phi^{{\rm BP}}_{{\rm B}} and ΊBeBP\Phi^{{\rm BP}}_{{\rm Be}} being the fluxes in the solar model of Bahcall--Pinsonneault from 1992. For ΊBe≅(0.7−1.3)ΊBeBP\Phi_{{\rm Be}}\cong (0.7 - 1.3)\Phi^{{\rm BP}}_{{\rm Be}} we find also at 95\% C.L. two new (one new) oscillation solutions for oscillations into active (sterile) neutrinos. The physical implications of the new solutions for the future solar neutrino experiments are discussed. The data rule out at 97\% -- 98\% (99 \%) C.L. the possibility of a universal (neutrino energy independent) suppression of the different components of the solar neutrino flux, resulting from solar Îœe\nu_e oscillations or transitions into active (sterile) neutrino.Comment: (to be publsihed in PRD) 25 pages + 9 figures in two separate (LATEX + compressed postscript) file

    Seasonal Variations of the 7Be Solar Neutrino Flux

    Full text link
    Measuring the 7Be solar neutrino flux is crucial towards solving the solar neutrino puzzle. The Borexino experiment, and possibly the KamLAND experiment, will be capable of studying the 7Be neutrinos in the near future. We discuss (1) how the seasonal variation of the Borexino and KamLAND data can be used to measure the 7Be solar neutrino flux in a background independent way and (2) how anomalous seasonal variations might be used to discover vacuum neutrino oscillations, independent of the solar model and the measurement of the background. In particular, we find that, after three years of Borexino or KamLAND running, vacuum neutrino oscillations can be either established or excluded for almost all values of (sin^2 2 theta, Delta m^2) preferred by the Homestake, GALLEX, SAGE, and Super-Kamiokande data. We also discuss how well seasonal variations of the data can be used to measure (sin^2 2 theta, Delta m^2) in the case of vacuum oscillations.Comment: 39 pages, 13 figures, uses psfig. Now the impact of the MSW effect on vacuum oscillations taken into account. Conclusions unchanged. References adde

    Current Status of the Solar Neutrino Problem with Super-Kamiokande

    Full text link
    We perform an updated model-independent analysis using the latest solar neutrino data obtained by 37^{37}Cl and 71^{71}Ga radiochemical experiments, and most notably by a large water-Cherenkov detector SuperKamiokande with their 504 days of data taking. We confirm that the astrophysical solutions to the solar neutrino problem are extremely disfavored by the data and a low-temperature modification of the standard solar model is excluded by more than 5 σ\sigma. We also propose a new way of illuminating the suppression pattern of various solar neutrino flux without invoking detailed flavor conversion mechanisms. It indicates that the strong suppression of 7^7Be neutrinos is no more true when the neutrino flavor conversion is taken into account.Comment: RevTex file, 10 pages, 7 postscript figure

    Neutrino Oscillations and Moments of Electron Spectra

    Get PDF
    We show that the effects of neutrino oscillations on 8B solar neutrinos are described well by the first two moments (the average and the variance) of the energy distribution of scattered or recoil electrons. For the SuperKamiokande and the Sudbury Neutrino Observatory experiments, the differences between the moments calculated with oscillations and the standard, no-oscillation moments are greater than 3 standard deviations for a significant fraction of the neutrino mass-mixing (Delta m^2, sin^2 2 theta) parameter space.Comment: 16 pages, Latex, text+figures. To be published in Physical Review C, January 199
    • 

    corecore