233 research outputs found

    Biomarkers of mitochondrial dysfunction in acute respiratory distress syndrome: A systematic review and meta-analysis

    Get PDF
    IntroductionAcute respiratory distress syndrome (ARDS) is one of the main causes of Intensive Care Unit morbidity and mortality. Metabolic biomarkers of mitochondrial dysfunction are correlated with disease development and high mortality in many respiratory conditions, however it is not known if they can be used to assess risk of mortality in patients with ARDS.ObjectivesThe aim of this systematic review was to examine the link between recorded biomarkers of mitochondrial dysfunction in ARDS and mortality.MethodsA systematic review of CINAHL, EMBASE, MEDLINE, and Cochrane databases was performed. Studies had to include critically ill ARDS patients with reported biomarkers of mitochondrial dysfunction and mortality. Information on the levels of biomarkers reflective of energy metabolism and mitochondrial respiratory function, mitochondrial metabolites, coenzymes, and mitochondrial deoxyribonucleic acid (mtDNA) copy number was recorded. RevMan5.4 was used for meta-analysis. Biomarkers measured in the samples representative of systemic circulation were analyzed separately from the biomarkers measured in the samples representative of lung compartment. Cochrane risk of bias tool and Newcastle-Ottawa scale were used to evaluate publication bias (Prospero protocol: CRD42022288262).ResultsTwenty-five studies were included in the systematic review and nine had raw data available for follow up meta-analysis. Biomarkers of mitochondrial dysfunction included mtDNA, glutathione coupled mediators, lactate, malondialdehyde, mitochondrial genetic defects, oxidative stress associated markers. Biomarkers that were eligible for meta-analysis inclusion were: xanthine, hypoxanthine, acetone, N-pentane, isoprene and mtDNA. Levels of mitochondrial biomarkers were significantly higher in ARDS than in non-ARDS controls (P = 0.0008) in the blood-based samples, whereas in the BAL the difference did not reach statistical significance (P = 0.14). mtDNA was the most frequently measured biomarker, its levels in the blood-based samples were significantly higher in ARDS compared to non-ARDS controls (P = 0.04). Difference between mtDNA levels in ARDS non-survivors compared to ARDS survivors did not reach statistical significance (P = 0.05).ConclusionIncreased levels of biomarkers of mitochondrial dysfunction in the blood-based samples are positively associated with ARDS. Circulating mtDNA is the most frequently measured biomarker of mitochondrial dysfunction, with significantly elevated levels in ARDS patients compared to non-ARDS controls. Its potential to predict risk of ARDS mortality requires further investigation.Systematic review registration[https://www.crd.york.ac.uk/prospero], identifier [CRD42022288262]

    Expression pattern of arenicinsñ€”the antimicrobial peptides of polychaete Arenicola marina

    Get PDF
    Immune responses of invertebrate animals are mediated through innate mechanisms, among which production of antimicrobial peptides play an important role. Although evolutionary Polychaetes represent an interesting group closely related to a putative common ancestor of other coelomates, their immune mechanisms still remain scarcely investigated. Previously our group has identified arenicins - new antimicrobial peptides of the lugworm Arenicola marina, since then these peptides were thoroughly characterized in terms of their structure and inhibitory potential. In the present study we addressed the question of the physiological functions of arenicins in the lugworm body. Using molecular and immunocytochemical methods we demonstrated that arencins are expressed in the wide range of the lugworm tissues - coelomocytes, body wall, extravasal tissue and the gut. The expression of arenicins is constitutive and does not depend on stimulation of various infectious stimuli. Most intensively arenicins are produced by mature coelomocytes where they function as killing agents inside the phagolysosome. In the gut and the body wall epithelia arenicins are released from producing cells via secretion as they are found both inside the epithelial cells and in the contents of the cuticle. Collectively our study showed that arenicins are found in different body compartments responsible for providing a first line of defence against infections, which implies their important role as key components of both epithelial and systemic branches of host defence

    Role of A Novel Angiogenesis FKBPL-CD44 Pathway in Preeclampsia Risk Stratification and Mesenchymal Stem Cell Treatment.

    Full text link
    ContextPreeclampsia is a leading cardiovascular complication in pregnancy lacking effective diagnostic and treatment strategies.ObjectiveTo investigate the diagnostic and therapeutic target potential of the angiogenesis proteins, FK506-binding protein like (FKBPL) and CD44.Design and interventionFKBPL and CD44 plasma concentration or placental expression were determined in women pre- or postdiagnosis of preeclampsia. Trophoblast and endothelial cell function was assessed following mesenchymal stem cell (MSC) treatment and in the context of FKBPL signaling.Settings and participantsHuman samples prediagnosis (15 and 20 weeks of gestation; n ≄ 57), or postdiagnosis (n = 18 for plasma; n = 4 for placenta) of preeclampsia were used to determine FKBPL and CD44 levels, compared to healthy controls. Trophoblast or endothelial cells were exposed to low/high oxygen, and treated with MSC-conditioned media (MSC-CM) or a FKBPL overexpression plasmid.Main outcome measuresPreeclampsia risk stratification and diagnostic potential of FKBPL and CD44 were investigated. MSC treatment effects and FKBPL-CD44 signaling in trophoblast and endothelial cells were assessed.ResultsThe CD44/FKBPL ratio was reduced in placenta and plasma following clinical diagnosis of preeclampsia. At 20 weeks of gestation, a high plasma CD44/FKBPL ratio was independently associated with the 2.3-fold increased risk of preeclampsia (odds ratio = 2.3, 95% confidence interval [CI] 1.03-5.23, P = 0.04). In combination with high mean arterial blood pressure (>82.5 mmHg), the risk further increased to 3.9-fold (95% CI 1.30-11.84, P = 0.016). Both hypoxia and MSC-based therapy inhibited FKBPL-CD44 signaling, enhancing cell angiogenesis.ConclusionsThe FKBPL-CD44 pathway appears to have a central role in the pathogenesis of preeclampsia, showing promising utilities for early diagnostic and therapeutic purposes

    Repair of Acute Respiratory Distress Syndrome in COVID-19 by Stromal Cells (REALIST-COVID Trial):A Multicentre, Randomised, Controlled Trial

    Get PDF
    RationaleMesenchymal stromal cells (MSCs) may modulate inflammation, promoting repair in COVID-19-related Acute Respiratory Distress Syndrome (ARDS).ObjectivesWe investigated safety and efficacy of ORBCEL-C (CD362-enriched, umbilical cord-derived MSCs) in COVID-related ARDS.MethodsThis multicentre, randomised, double-blind, allocation concealed, placebo-controlled trial (NCT03042143) randomised patients with moderate-to-severe COVID-related ARDS to receive ORBCEL-C (400million cells) or placebo (Plasma-Lyte148).MeasurementsThe primary safety and efficacy outcomes were incidence of serious adverse events and oxygenation index at day 7 respectively. Secondary outcomes included respiratory compliance, driving pressure, PaO2/FiO2 ratio and SOFA score. Clinical outcomes relating to duration of ventilation, length of intensive care unit and hospital stays, and mortality were collected. Long-term follow up included diagnosis of interstitial lung disease at 1 year, and significant medical events and mortality at 2 years. Transcriptomic analysis was performed on whole blood at day 0, 4 and 7.Main results60 participants were recruited (final analysis n=30 ORBCEL-C, n=29 placebo: 1 in placebo group withdrew consent). 6 serious adverse events occurred in the ORBCEL-C and 3 in the placebo group, RR 2.9(0.6-13.2)p=0.25. Day 7 mean[SD] oxygenation index did not differ (ORBCEL-C 98.357.2], placebo 96.667.3). There were no differences in secondary surrogate outcomes, nor mortality at day 28, day 90, 1 or 2 years. There was no difference in prevalence of interstitial lung disease at 1year nor significant medical events up to 2 years. ORBCEL-C modulated the peripheral blood transcriptome.ConclusionORBCEL-C MSCs were safe in moderate-to-severe COVID-related ARDS, but did not improve surrogates of pulmonary organ dysfunction. Clinical trial registration available at www.Clinicaltrialsgov, ID: NCT03042143. This article is open access and distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/)
    • 

    corecore