394 research outputs found

    Simulation of Polycrystals Using an FEM-based Representative Volume Element

    Get PDF
      &nbsp

    Schema Independent Relational Learning

    Full text link
    Learning novel concepts and relations from relational databases is an important problem with many applications in database systems and machine learning. Relational learning algorithms learn the definition of a new relation in terms of existing relations in the database. Nevertheless, the same data set may be represented under different schemas for various reasons, such as efficiency, data quality, and usability. Unfortunately, the output of current relational learning algorithms tends to vary quite substantially over the choice of schema, both in terms of learning accuracy and efficiency. This variation complicates their off-the-shelf application. In this paper, we introduce and formalize the property of schema independence of relational learning algorithms, and study both the theoretical and empirical dependence of existing algorithms on the common class of (de) composition schema transformations. We study both sample-based learning algorithms, which learn from sets of labeled examples, and query-based algorithms, which learn by asking queries to an oracle. We prove that current relational learning algorithms are generally not schema independent. For query-based learning algorithms we show that the (de) composition transformations influence their query complexity. We propose Castor, a sample-based relational learning algorithm that achieves schema independence by leveraging data dependencies. We support the theoretical results with an empirical study that demonstrates the schema dependence/independence of several algorithms on existing benchmark and real-world datasets under (de) compositions

    From internationalization to global citizenship: Dialogues in international higher education

    Get PDF
    As we consider assessment and, by implication, graduation, the question of what sort of graduate we are sending out into the world arises. A university education is not simply more stuff than A-level: it is, we hope, part of the transformation of a student into the adult they were always capable of being, realizing their potential. But as our opening chapter argued, there has to be a selection process for what is going to be emphasized: just being knowledgeable is a recipe for narrowness, and for our new graduate to be wrong-footed by a world that is far more complex than their university life prepared them for. Universities were ‘global’ long before almost any other ventures, with international collaboration on research going back centuries; our students come from all over the world, and our graduates go just about everywhere. We would be irresponsible not to consider how best to prepare them for that fact, but it is not straightforward – there are competing versions of what it is to be a ‘global citizen’, as this chapter explores

    A Cost-based Optimizer for Gradient Descent Optimization

    Full text link
    As the use of machine learning (ML) permeates into diverse application domains, there is an urgent need to support a declarative framework for ML. Ideally, a user will specify an ML task in a high-level and easy-to-use language and the framework will invoke the appropriate algorithms and system configurations to execute it. An important observation towards designing such a framework is that many ML tasks can be expressed as mathematical optimization problems, which take a specific form. Furthermore, these optimization problems can be efficiently solved using variations of the gradient descent (GD) algorithm. Thus, to decouple a user specification of an ML task from its execution, a key component is a GD optimizer. We propose a cost-based GD optimizer that selects the best GD plan for a given ML task. To build our optimizer, we introduce a set of abstract operators for expressing GD algorithms and propose a novel approach to estimate the number of iterations a GD algorithm requires to converge. Extensive experiments on real and synthetic datasets show that our optimizer not only chooses the best GD plan but also allows for optimizations that achieve orders of magnitude performance speed-up.Comment: Accepted at SIGMOD 201

    Evaluation of an eBook for Oral Health Literacy© to Promote Child Health: Readability, Suitability, Understandability, Actionability, and Gist-Based Message

    Get PDF
    The purpose of the study was to evaluate an oral health curriculum called an eBook for Oral Health Literacy© to determine its effectiveness for promoting child health. A secondary purpose was to describe and explain the design characteristics of readability, suitability, understandability, and actionability of the 17 chapters of the eBook. A third purpose was to conduct evaluations on verbatim representations (or literal facts) that are presented in the eBook chapters, including the gist representations that are not explicitly presented but inferred by the reader from the chapter information. Results found that the eBook for Oral Health Literacy© had acceptable, and in many cases, favorable scores, for the five design elements of readability, suitability, understandability, actionability, and gist comprehension. Ongoing dissemination of the eBook for Oral Health Literacy© curriculum has the potential to boost children who are “learning to read” and “reading to learn” about oral health hygiene and nutrition. Future studies should use one or more chapters from the curriculum as an intervention to test this educational premise as an explanatory basis for functional health literacy

    LINVIEW: Incremental View Maintenance for Complex Analytical Queries

    Full text link
    Many analytics tasks and machine learning problems can be naturally expressed by iterative linear algebra programs. In this paper, we study the incremental view maintenance problem for such complex analytical queries. We develop a framework, called LINVIEW, for capturing deltas of linear algebra programs and understanding their computational cost. Linear algebra operations tend to cause an avalanche effect where even very local changes to the input matrices spread out and infect all of the intermediate results and the final view, causing incremental view maintenance to lose its performance benefit over re-evaluation. We develop techniques based on matrix factorizations to contain such epidemics of change. As a consequence, our techniques make incremental view maintenance of linear algebra practical and usually substantially cheaper than re-evaluation. We show, both analytically and experimentally, the usefulness of these techniques when applied to standard analytics tasks. Our evaluation demonstrates the efficiency of LINVIEW in generating parallel incremental programs that outperform re-evaluation techniques by more than an order of magnitude.Comment: 14 pages, SIGMO

    Daily Eastern News: November 10, 1975

    Get PDF
    https://thekeep.eiu.edu/den_1975_nov/1005/thumbnail.jp

    Simulation der einfachen Scherung einer polykristallinen Aluminiumprobe

    Get PDF

    Simulation der einfachen Scherung einer polykristallinen Aluminiumprobe

    Get PDF
      &nbsp

    Consistency in scalable systems

    Full text link
    [EN] While eventual consistency is the general consistency guarantee ensured in cloud environments, stronger guarantees are in fact achievable. We show how scalable and highly available systems can provide processor, causal, sequential and session consistency during normal functioning. Failures and network partitions negatively affect consistency and generate divergence. After the failure or the partition, reconciliation techniques allow the system to restore consistency.This work has been supported by EU FEDER and Spanish MICINN under research grants TIN2009-14460-C03-01 and TIN2010-17193.Ruiz Fuertes, MI.; PallardĂł Lozoya, MR.; Muñoz-EscoĂ­, FD. (2012). Consistency in scalable systems. En On the Move to Meaningful Internet Systems: OTM 2012. Springer Verlag (Germany). 7566:549-565. https://doi.org/10.1007/978-3-642-33615-7_7S5495657566Ahamad, M., Bazzi, R.A., John, R., Kohli, P., Neiger, G.: The power of processor consistency. In: Proceedings of the Fifth Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA 1993, pp. 251–260. ACM, New York (1993), http://doi.acm.org/10.1145/165231.165264Alvarez, A., ArĂ©valo, S., Cholvi, V., FernĂĄndez, A., JimĂ©nez, E.: On the Interconnection of Message Passing Systems. Inf. Process. Lett. 105(6), 249–254 (2008)Amazon Web Services LLC: Amazon Simple Storage Service (S3). Website (March 2011), http://aws.amazon.com/s3/Baker, J., Bond, C., Corbett, J.C., Furman, J.J., Khorlin, A., Larson, J., LĂ©on, J., Li, Y., Lloyd, A., Yushprakh, V.: Megastore: Providing Scalable, Highly Available Storage for interactive services. In: 5th Biennial Conf. on Innovative Data Systems Research (CIDR), Asilomar, CA, USA, pp. 223–234 (January 2011)Baldoni, R., Beraldi, R., Friedman, R., van Renesse, R.: The Hierarchical Daisy Architecture for Causal Delivery. Distributed Systems Engineering 6(2), 71–81 (1999)Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in Database Systems. Addison-Wesley (1987)Bernstein, P.A., Reid, C.W., Das, S.: Hyder - A Transactional Record Manager for Shared Flash. In: 5th Biennial Conf. on Innovative Data Systems Research (CIDR), Asilomar, CA, USA, pp. 9–20 (January 2011)Bershad, B.N., Zekauskas, M.J., Sawdon, W.A.: The Midway Distributed Shared Memory System. In: Proc. IEEE CompCon Conf. (1993)Brewer, E.A.: Towards Robust Distributed Systems (Abstract). In: Proc. ACM Symp. Princ. Distrib. Comput., p. 7 (2000)Budhiraja, N., Marzullo, K., Schneider, F.B., Toueg, S.: The Primary-Backup Approach. In: Mullender, S.J. (ed.) Distributed Systems, 2nd edn., ch. 8, pp. 199–216. Addison-Wesley, ACM Press (1993)Campbell, D.G., Kakivaya, G., Ellis, N.: Extreme Scale with Full SQL Language Support in Microsoft SQL Azure. In: Intnl. Conf. on Mngmnt. of Data (SIGMOD), pp. 1021–1024. ACM, New York (2010), http://doi.acm.org/10.1145/1807167.1807280Cholvi, V., JimĂ©nez, E., Anta, A.F.: Interconnection of distributed memory models. J. Parallel Distrib. Comput. 69(3), 295–306 (2009)Cooper, B.F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P., Jacobsen, H., Puz, N., Weaver, D., Yerneni, R.: PNUTS: Yahoo!’s hosted data serving platform. PVLDB 1(2), 1277–1288 (2008)Daudjee, K., Salem, K.: Lazy Database Replication with Ordering Guarantees. In: Proc. Int. Conf. Data Eng., pp. 424–435. IEEE-CS (2004)Daudjee, K., Salem, K.: Lazy Database Replication with Snapshot Isolation. In: Proc. Int. Conf. Very Large Data Bases, pp. 715–726. ACM (2006)DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s Highly Available Key-value Store. In: ACM Symp. Oper. Syst. Princ., pp. 205–220 (2007)FernĂĄndez, A., JimĂ©nez, E., Cholvi, V.: On the interconnection of causal memory systems. J. Parallel Distrib. Comput. 64(4), 498–506 (2004)Gilbert, S., Lynch, N.A.: Brewer’s Conjecture and the Feasibility of Consistent, Available, Partition-Tolerant Web Services. ACM SIGACT News 33(2), 51–59 (2002)Goodman, J.R.: Cache Consistency and Sequential Consistency. Tech. Rep. 61, SCI Committee (March 1989)Gray, J., Helland, P., O’Neil, P.E., Shasha, D.: The Dangers of Replication and a Solution. In: Proc. ACM SIGMOD Int. Conf. Manage. Data, pp. 173–182. ACM (1996)Helland, P., Campbell, D.: Building on Quicksand. In: Proc. Bienn. Conf. Innov. Data Syst. Research (2009), www.crdrdb.orgHutto, P., Ahamad, M.: Slow Memory: Weakening Consistency to Enhance Concurrency in Distributed Shared Memories. In: Proceedings of the 10th International Conference on Distributed Computing Systems, pp. 302–311 (May 1990)Johnson, S., Jahanian, F., Shah, J.: The Inter-group Router Approach to Scalable Group Composition. In: ICDCS, pp. 4–14 (1999)Kraska, T., Hentschel, M., Alonso, G., Kossmann, D.: Consistency Rationing in the Cloud: Pay only when it matters. PVLDB 2(1), 253–264 (2009)Lamport, L.: How to Make a Multiprocessor Computer that Correctly Executes multiprocess programs. IEEE Trans. Computers 28(9), 690–691 (1979)Lipton, R.J., Sandberg, J.S.: Pram: A Scalable Shared Memory. Tech. Rep. CS-TR-180-88, Princeton University, Department of Computer Science (September 1988)Mosberger, D.: Memory Consistency Models. Operating Systems Review 27(1), 18–26 (1993)Ruiz-Fuertes, M.I., Muñoz-EscoĂ­, F.D.: Refinement of the One-Copy Serializable Correctness Criterion. Tech. Rep. ITI-SIDI-2011/004, Instituto TecnolĂłgico de InformĂĄtica, Valencia, Spain (November 2011)Stonebraker, M., Madden, S., Abadi, D.J., Harizopoulos, S., Hachem, N., Helland, P.: The End of an Architectural Era (It’s Time for a Complete Rewrite). In: 33rd Intnl. Conf. on Very Large Data Bases (VLDB), pp. 1150–1160. ACM Press, Vienna (2007)Terry, D.B., Demers, A.J., Petersen, K., Spreitzer, M., Theimer, M., Welch, B.B.: Session Guarantees for Weakly Consistent Replicated Data. In: Proc. Int. Conf. Parallel Distrib. Inform. Syst., pp. 140–149. IEEE-CS (1994)Vogels, W.: Eventually Consistent. Communications of the ACM (CACM) 52(1), 40–44 (2009)VoltDB, Inc.: VoltDB technical overview: A high performance, scalable RDBMS for Big Data, high velocity OLTP and realtime analytics. Website (April 2012), http://voltdb.com/sites/default/files/PDFs/VoltDBTechnicalOverview_April_2012.pdfWiesmann, M., Schiper, A.: Comparison of Database Replication Techniques Based on Total Order Broadcast. IEEE T. Knowl. Data En. 17(4), 551–566 (2005
    • 

    corecore