70 research outputs found

    The ancient history of the structure of ribonuclease P and the early origins of Archaea

    Get PDF

    Cholesterol-dependent hemolytic activity of Passiflora quadrangularis leaves

    No full text
    Plants used in traditional medicine are rich sources of hemolysins and cytolysins, which are potential bactericidal and anticancer drugs. The present study demonstrates for the first time the presence of a hemolysin in the leaves of Passiflora quadrangularis L. This hemolysin is heat stable, resistant to trypsin treatment, has the capacity to froth, and acts very rapidly. The hemolysin activity is dose-dependent, with a slope greater than 1 in a double-logarithmic plot. Polyethylene glycols of high molecular weight were able to reduce the rate of hemolysis, while liposomes containing cholesterol completely inhibited it. In contrast, liposomes containing phosphatidylcholine were ineffective. The Passiflora hemolysin markedly increased the conductance of planar lipid bilayers containing cholesterol but was ineffective in cholesterol-free bilayers. Successive extraction of the crude hemolysin with n-hexane, chloroform, ethyl acetate, and n-butanol resulted in a 10-fold purification, with the hemolytic activity being recovered in the n-butanol fraction. The data suggest that membrane cholesterol is the primary target for this hemolysin and that several hemolysin molecules form a large transmembrane water pore. The properties of the Passiflora hemolysin, such as its frothing ability, positive color reaction with vanillin, selective extraction with n-butanol, HPLC profile, cholesterol-dependent membrane susceptibility, formation of a stable complex with cholesterol, and rapid erythrocyte lysis kinetics indicate that it is probably a saponin

    Fundamental ion cyclotron resonance heating of JET deuterium plasmas

    No full text
    Radio frequency heating of majority ions is of prime importance for understanding the basic role of auxiliary heating in the activated D-T phase of ITER. Majority deuterium ion cyclotron resonance heating (ICRH) experiments at the fundamental cyclotron frequency were performed in JET. In spite of the poor antenna coupling at 25 MHz, this heating scheme proved promising when adopted in combination with D neutral beam injection (NBI). The effect of fundamental ICRH of a D population was clearly demonstrated in these experiments: by adding similar to 25% of heating power the fusion power was increased up to 30-50%, depending on the type of NBI adopted. At this power level, the ion and electron temperatures increased from T-i similar to 4.0 keV and T-e similar to 4.5 keV (NBI-only phase) to T-i similar to 5.5 keV and T-e similar to 5.2 keV (ICRH + NBI phase), respectively. The increase in the neutron yield was stronger when 80 keV rather than 130 keV deuterons were injected in the plasma. It is shown that the neutron rate, the diamagnetic energy and the electron as well as the ion temperature scale roughly linearly with the applied RF power. A synergistic effect of the combined use of ICRF and NBI heating was observed: (i) the number of neutron counts measured by the neutron camera during the combined ICRF + NBI phases of the discharges exceeded the sum of the individual counts of the NBI-only and ICRF-only phases; (ii) a substantial increase in the number of slowing-down beam ions was detected by the time of flight neutron spectrometer when ICRF power was switched on; (iii) a small D subpopulation with energies slightly above the NBI launch energy was detected by the neutral particle analyzer and gamma-ray spectroscopy

    Three-dimensional RNA structure refinement by hydroxyl radical probing

    No full text
    Molecular modeling guided by experimentally-derived structural information is an attractive approach for three-dimensional structure determination of complex RNAs that are not amenable to study by high-resolution methods. Hydroxyl radical probing (HRP), performed routinely in many laboratories, provides a measure of solvent accessibility at individual nucleotides. HRP measurements have, to date, only been used to evaluate RNA models qualitatively. Here, we report development of a quantitative structure refinement approach using HRP measurements to drive discrete molecular dynamics simulations for RNAs ranging in size from 80 to 230 nucleotides. HRP reactivities were first used to identify RNAs that form extensive helical packing interactions. For these RNAs, we achieved highly significant structure predictions, given inputs of RNA sequence and base pairing. This HRP-directed tertiary structure refinement approach generates robust structural hypotheses useful for guiding explorations of structure-function interrelationships in RNA
    corecore