1,684 research outputs found

    A proof of the Kramers degeneracy of transmission eigenvalues from antisymmetry of the scattering matrix

    Full text link
    In time reversal symmetric systems with half integral spins (or more concretely, systems with an antiunitary symmetry that squares to -1 and commutes with the Hamiltonian) the transmission eigenvalues of the scattering matrix come in pairs. We present a proof of this fact that is valid both for even and odd number of modes and relies solely on the antisymmetry of the scattering matrix imposed by time reversal symmetry.Comment: 2 page

    Insight into Resonant Activation in Discrete Systems

    Full text link
    The resonant activation phenomenon (RAP) in a discrete system is studied using the master equation formalism. We show that the RAP corresponds to a non-monotonic behavior of the frequency dependent first passage time probability density function (pdf). An analytical expression for the resonant frequency is introduced, which, together with numerical results, helps understand the RAP behavior in the space spanned by the transition rates for the case of reflecting and absorbing boundary conditions. The limited range of system parameters for which the RAP occurs is discussed. We show that a minimum and a maximum in the mean first passage time (MFPT) can be obtained when both boundaries are absorbing. Relationships to some biological systems are suggested.Comment: 5 pages, 5 figures, Phys. Rev. E., in pres

    Storage of classical information in quantum spins

    Get PDF
    Digital magnetic recording is based on the storage of a bit of information in the orientation of a magnetic system with two stable ground states. Here we address two fundamental problems that arise when this is done on a quantized spin: quantum spin tunneling and back-action of the readout process. We show that fundamental differences exist between integer and semi-integer spins when it comes to both, read and record classical information in a quantized spin. Our findings imply fundamental limits to the miniaturization of magnetic bits and are relevant to recent experiments where spin polarized scanning tunneling microscope reads and records a classical bit in the spin orientation of a single magnetic atom

    Time Reversal and n-qubit Canonical Decompositions

    Full text link
    For n an even number of qubits and v a unitary evolution, a matrix decomposition v=k1 a k2 of the unitary group is explicitly computable and allows for study of the dynamics of the concurrence entanglement monotone. The side factors k1 and k2 of this Concurrence Canonical Decomposition (CCD) are concurrence symmetries, so the dynamics reduce to consideration of the a factor. In this work, we provide an explicit numerical algorithm computing v=k1 a k2 for n odd. Further, in the odd case we lift the monotone to a two-argument function, allowing for a theory of concurrence dynamics in odd qubits. The generalization may also be studied using the CCD, leading again to maximal concurrence capacity for most unitaries. The key technique is to consider the spin-flip as a time reversal symmetry operator in Wigner's axiomatization; the original CCD derivation may be restated entirely in terms of this time reversal. En route, we observe a Kramers' nondegeneracy: the existence of a nondegenerate eigenstate of any time reversal symmetric n-qubit Hamiltonian demands (i) n even and (ii) maximal concurrence of said eigenstate. We provide examples of how to apply this work to study the kinematics and dynamics of entanglement in spin chain Hamiltonians.Comment: 20 pages, 3 figures; v2 (17pp.): major revision, new abstract, introduction, expanded bibliograph

    Activated escape of periodically modulated systems

    Full text link
    The rate of noise-induced escape from a metastable state of a periodically modulated overdamped system is found for an arbitrary modulation amplitude AA. The instantaneous escape rate displays peaks that vary with the modulation from Gaussian to strongly asymmetric. The prefactor ν\nu in the period-averaged escape rate depends on AA nonmonotonically. Near the bifurcation amplitude AcA_c it scales as ν(AcA)ζ\nu\propto (A_c-A)^{\zeta}. We identify three scaling regimes, with ζ=1/4,1\zeta = 1/4, -1, and 1/2

    Semiclassical limit of the entanglement in closed pure systems

    Full text link
    We discuss the semiclassical limit of the entanglement for the class of closed pure systems. By means of analytical and numerical calculations we obtain two main results: (i) the short-time entanglement does not depend on Planck's constant and (ii) the long-time entanglement increases as more semiclassical regimes are attained. On one hand, this result is in contrast with the idea that the entanglement should be destroyed when the macroscopic limit is reached. On the other hand, it emphasizes the role played by decoherence in the process of emergence of the classical world. We also found that, for Gaussian initial states, the entanglement dynamics may be described by an entirely classical entropy in the semiclassical limit.Comment: 8 pages, 2 figures (accepted for publication in Phys. Rev. A

    Strong Orientation Effects in Ionization of H2+_2^+ by Short, Intense, High-Frequency Light Sources

    Full text link
    We present three dimensional time-dependent calculations of ionization of arbitrarily spatially oriented H2+_2^+ by attosecond, intense, high-frequency laser fields. The ionization probability shows a strong dependence on both the internuclear distance and the relative orientation between the laser field and the internuclear axis.Comment: 4 pages, 4 figure

    Recurrent difficulties: solving quantitative problems

    Get PDF
    Investigating the process students use to solve quantitative problems using a think aloud strategy

    Kramers-Kronig, Bode, and the meaning of zero

    Full text link
    The implications of causality, as captured by the Kramers-Kronig relations between the real and imaginary parts of a linear response function, are familiar parts of the physics curriculum. In 1937, Bode derived a similar relation between the magnitude (response gain) and phase. Although the Kramers-Kronig relations are an equality, Bode's relation is effectively an inequality. This perhaps-surprising difference is explained using elementary examples and ultimately traces back to delays in the flow of information within the system formed by the physical object and measurement apparatus.Comment: 8 pages; American Journal of Physics, to appea

    National Soils Database

    Get PDF
    End of project reportThe objectives of the National Soils Database project were fourfold. The first was to generate a national database of soil geochemistry to complete the work that commenced with a survey of the South East of Ireland carried out in 1995 and 1996 by Teagasc (McGrath and McCormack, 1999). Secondly, to produce point and interpolated spatial distribution maps of major, minor and trace elements and to interpret these with respect to underlying parent material, glacial geology, land use and possible anthropogenic effects. A third objective was to investigate the microbial community structure in a range of soil types to determine the relationship between soil microbiology and chemistry. The final objective was to establish a National Soils Archive
    corecore