23,824 research outputs found
Electron correlations and single-particle physics in the Integer Quantum Hall Effect
The compressibility of a two-dimensional electron system with spin in a
spatially correlated random potential and a quantizing magnetic field is
investigated. Electron-electron interaction is treated with the Hartree-Fock
method. Numerical results for the influences of interaction and disorder on the
compressibility as a function of the particle density and the strength of the
magnetic field are presented. Localization-delocalization transitions
associated with highly compressible region in the energy spectrum are found at
half-integer filling factors. Coulomb blockade effects are found near integer
fillings in the regions of low compressibility. Results are compared with
recent experiments.Comment: 4 pages, 2 figures, replaced with revised versio
Fractional charges in pyrochlore lattices
A pyrochlore lattice is considered where the average electron number of
electrons per site is half--integer, concentrating on the case of exactly half
an electron per site. Strong on-site repulsions are assumed, so that all sites
are either empty or singly occupied. Where there are in addition strong
nearest--neighbour repulsions, a tetrahedron rule comes into effect, as
previously suggested for magnetite. We show that in this case, there exist
excitations with fractional charge (+/-) e/2. These are intimately connected
with the high degeneracy of the ground state in the absence of kinetic energy
terms. When an additional electron is inserted into the system, it decays into
two point like excitations with charge -e/2, connected by a Heisenberg spin
chain which carries the electron's spin.Comment: 10 pages, 4 eps figures. To appear in Decemeber issue of Annalen der
Physi
The cognitive demands of second order manual control: Applications of the event related brain potential
Three experiments are described in which tracking difficulty is varied in the presence of a covert tone discrimination task. Event related brain potentials (ERPs) elicited by the tones are employed as an index of the resource demands of tracking. The ERP measure reflected the control order variation, and this variable was thereby assumed to compete for perceptual/central processing resources. A fine-grained analysis of the results suggested that the primary demands of second order tracking involve the central processing operations of maintaining a more complex internal model of the dynamic system, rather than the perceptual demands of higher derivative perception. Experiment 3 varied tracking bandwidth in random input tracking, and the ERP was unaffected. Bandwidth was then inferred to compete for response-related processing resources that are independent of the ERP
Genomic function during the lampbrush chromosome stage of amphibian oogenesis
Throughout its lengthy developmental history the disposition of the genetic material in the amphibian oocyte nucleus differs from that in other cell types. The chromosomes in the oocyte nucleus, arrested for the whole of oogenesis at the prophase of the first meiotic division, are known to contain at least the tetraploid amount of DNA.(1,2) Oogenesis in amphibia requires months or even years to complete, depending on the species
Revivals of quantum wave-packets in graphene
We investigate the propagation of wave-packets on graphene in a perpendicular
magnetic field and the appearance of collapses and revivals in the
time-evolution of an initially localised wave-packet. The wave-packet evolution
in graphene differs drastically from the one in an electron gas and shows a
rich revival structure similar to the dynamics of highly excited Rydberg
states.
We present a novel numerical wave-packet propagation scheme in order to solve
the effective single-particle Dirac-Hamiltonian of graphene and show how the
collapse and revival dynamics is affected by the presence of disorder. Our
effective numerical method is of general interest for the solution of the Dirac
equation in the presence of potentials and magnetic fields.Comment: 22 pages, 10 figures, 3 movies, to appear in New Journal of Physic
Characterization of Active Main Belt Object P/2012 F5 (Gibbs): A Possible Impacted Asteroid
In this work we characterize the recently discovered active main belt object
P/2012 F5 (Gibbs), which was discovered with a dust trail > 7' in length in the
outer main belt, 7 months prior to aphelion. We use optical imaging obtained on
UT 2012 March 27 to analyze the central condensation and the long trail. We
find nuclear B-band and R-band apparent magnitudes of 20.96 and 19.93 mag,
respectively, which give an upper limit on the radius of the nucleus of 2.1 km.
The geometric cross-section of material in the trail was ~ 4 x 10^8 m^2,
corresponding to a dust mass of ~ 5 x 10^7 kg. Analysis of infrared images
taken by the Wide-Field Infrared Survey Explorer in September 2010 reveals that
the object was below the detection limit, suggesting that it was less active
than it was during 2012, or possibly inactive, just 6 months after it passed
through perihelion. We set a 1-sigma upper limit on its radius during this time
of 2.9 km. P/2012 F5 (Gibbs) is dynamically stable in the outer main belt on
timescales of ~ 1 Gyr, pointing towards an asteroidal origin. We find that the
morphology of the ejected dust is consistent with it being produced by a single
event that occurred on UT 2011 July 7 20 days, possibly as the result of
a collision with a small impactor.Comment: 29 pages, 5 figures. Accepted for publication in Ap
Jamming under tension in polymer crazes
Molecular dynamics simulations are used to study a unique expanded jammed
state. Tension transforms many glassy polymers from a dense glass to a network
of fibrils and voids called a craze. Entanglements between polymers and
interchain friction jam the system after a fixed increase in volume. As in
dense jammed systems, the distribution of forces is exponential, but they are
tensile rather than compressive. The broad distribution of forces has important
implications for fibril breakdown and the ultimate strength of crazes.Comment: 4 pages, 4 figure
Lingering grains of truth around comet 17P/Holmes
Comet 17P/Holmes underwent a massive outburst in 2007 Oct., brightening by a
factor of almost a million in under 48 hours. We used infrared images taken by
the Wide-Field Survey Explorer mission to characterize the comet as it appeared
at a heliocentric distance of 5.1 AU almost 3 years after the outburst. The
comet appeared to be active with a coma and dust trail along the orbital plane.
We constrained the diameter, albedo, and beaming parameter of the nucleus to
4.135 0.610 km, 0.03 0.01 and 1.03 0.21, respectively. The
properties of the nucleus are consistent with those of other Jupiter Family
comets. The best-fit temperature of the coma was 134 11 K, slightly
higher than the blackbody temperature at that heliocentric distance. Using
Finson-Probstein modeling we found that the morphology of the trail was
consistent with ejection during the 2007 outburst and was made up of dust
grains between 250 m and a few cm in radius. The trail mass was 1.2
- 5.3 10 kg.Comment: Accepted to ApJ. 2 tables, 4 figure
NEOWISE Reactivation Mission Year One: Preliminary Asteroid Diameters and Albedos
We present preliminary diameters and albedos for 7,959 asteroids detected in
the first year of the NEOWISE Reactivation mission. 201 are near-Earth
asteroids (NEAs). 7,758 are Main Belt or Mars-crossing asteroids. 17% of these
objects have not been previously characterized using WISE or NEOWISE thermal
measurements. Diameters are determined to an accuracy of ~20% or better. If
good-quality H magnitudes are available, albedos can be determined to within
~40% or better.Comment: 42 pages, 5 figure
Spin polarization in a T-shape conductor induced by strong Rashba spin-orbit coupling
We investigate numerically the spin polarization of the current in the
presence of Rashba spin-orbit interaction in a T-shaped conductor proposed by
A.A. Kiselev and K.W. Kim (Appl. Phys. Lett. {\bf 78} 775 (2001)). The
recursive Green function method is used to calculate the three terminal spin
dependent transmission probabilities. We focus on single-channel transport and
show that the spin polarization becomes nearly 100 % with a conductance close
to for sufficiently strong spin-orbit coupling. This is interpreted
by the fact that electrons with opposite spin states are deflected into an
opposite terminal by the spin dependent Lorentz force. The influence of the
disorder on the predicted effect is also discussed. Cases for multi-channel
transport are studied in connection with experiments
- …